BIOINFORMATICS

How can we cluster biological data?

Marco Beccuti

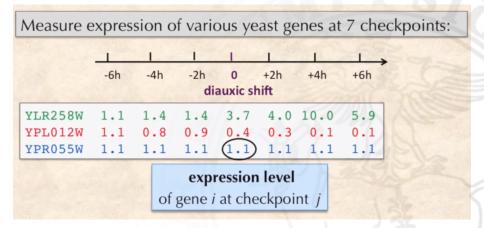
Università degli Studi di Torino Dipartimento di Informatica

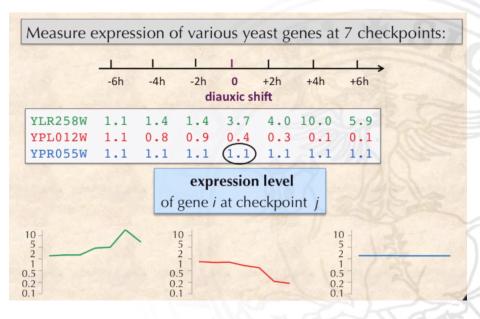
May 2019

Outline

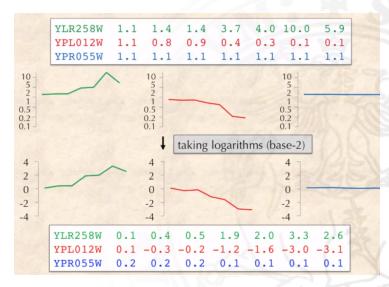
- Gene expression and clustering;
- Clustering as optimization problem;
- K-means Clustering;
- Hierarchical Clustering;

Chapter 8 in Bioinformatics Algorithms: An active Learning Approach (Vol.2).

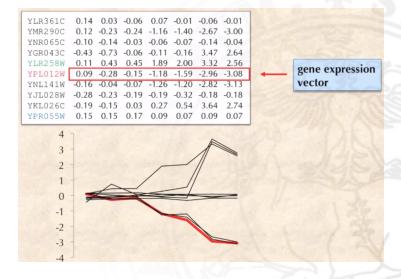




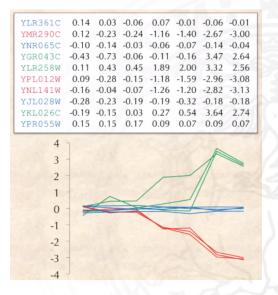
• Switching to Logarithms of Expression Level



• Gene expression matrix



• Gene expression matrix

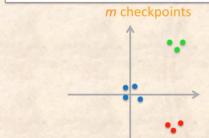


- In 1997 Joseph deRisi measured expression of 6,400 yeast genes at 7 checkpoints before and after diauxic shift;
- Expression matrix with 6,400 x 7;
- Goal: partition all yeast genes into clusters so that:
 - genes in the same cluster have similar behavior;
 - gene in different clusters have different behavior.

- In 1999 Uri Alon measured expression of 2,000 genes from 40 colon tumor patients and 40 healthy people;
- Two Expression matrices with dimension 2,000 x 40;
- **Goal:** find genes with significantly different expression vectors between tumor patients and healthy (potential cancer bio-markers)

• Gene as Points in a Multidimensional Space

YLR361C	0.14	0.03	-0.06	0.07	-0.01	-0.06	-0.01
YMR290C	0.12	-0.23	-0.24	-1.16	-1.40	-2.67	-3.00
YNR065C	-0.10	-0.14	-0.03	-0.06	-0.07	-0.14	-0.04
YGR043C	-0.43	-0.73	-0.06	-0.11	-0.16	3.47	2.64
YLR258W	0.11	0.43	0.45	1.89	2.00	3.32	2.56
YPL012W	0.09	-0.28	-0.15	-1.18	-1.59	-2.96	-3.08
YNL141W	-0.16	-0.04	-0.07	-1.26	-1.20	-2.82	-3.13
YJL028W	-0.28	-0.23	-0.19	-0.19	-0.32	-0.18	-0.18
YKL026C	-0.19	-0.15	0.03	0.27	0.54	3.64	2.74
YPR055W	0.15	0.15	0.17	0.09	0.07	0.09	0.07



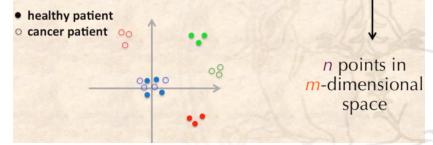
n x m gene expression matrix

n points in m-dimensional space

• Gene as Points in a Multidimensional Space

	YLR361C	0.14	0.03	-0.06	0.07	-0.01	-0.06	-0.01	
	YMR290C	0.12	-0.23	-0.24	-1.16	-1.40	-2.67	-3.00	
	YNR065C	-0.10	-0.14	-0.03	-0.06	-0.07	-0.14	-0.04	
	YGR043C	-0.43	-0.73	-0.06	-0.11	-0.16	3.47	2.64	
	YLR258W	0.11	0.43	0.45	1.89	2.00	3.32	2.56	
	YPL012W	0.09	-0.28	-0.15	-1.18	-1.59	-2.96	-3.08	
	YNL141W	-0.16	-0.04	-0.07	-1.26	-1.20	-2.82	-3.13	
	YJL028W	-0.28	-0.23	-0.19	-0.19	-0.32	-0.18	-0.18	
	YKL026C	-0.19	-0.15	0.03	0.27	0.54	3.64	2.74	
1	YPR055W	0.15	0.15	0.17	0.09	0.07	0.09	0.07	

n x m gene expression matrix



Gene expression as a Cancer Biomarker

MammaPrint: a test that evaluates the likelihood of breast cancer recurrence based on the expression of just 70 genes.

• but how did scientists discover these 70 human genes?

BIOINFORMATICS

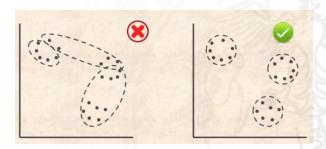
Part 1

Clustering as optimization problem

Clustering as optimization problem Toward a Computational Problem

Good Clustering Principle:

Elements within the same cluster should be closer to each other than elements in different clusters.



- we define a threshold Δ then:
 - distance between elements in the same cluster must be $\leq \Delta$;
 - ► distance between elements in different clusters must be > ∆;

M. Beccuti

BIOINFORMATICS

Introducing the Clustering problem:

Clustering problem

Definition: find a partition of expression vector into clusters satisfying the Good Clustering Principle

Input: A collection of *n* vectors and an integer *k*.

Output: Partition of *n* vectors into *k* disjoint clusters satisfying the **Good Clustering Principle**

Can you find a partition into two clusters which is valid solution for the clustering problem?



Introducing the Clustering problem:

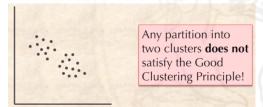
Clustering problem

Definition: find a partition of expression vector into clusters satisfying the Good Clustering Principle

Input: A collection of *n* vectors and an integer *k*.

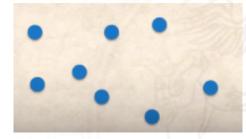
Output: Partition of *n* vectors into *k* disjoint clusters satisfying the **Good Clustering Principle**

Can you find a partition into two clusters which is valid solution for the clustering problem?



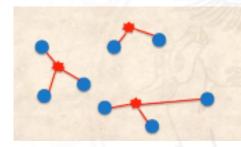
Clustering as Finding Centers

• **Goal:** partition a set **Data** into k clusters.



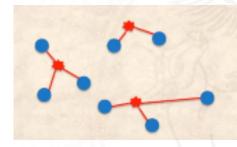
Clustering as Finding Centers

- **Goal:** partition a set **Data** into k clusters.
- Equivalent goal: find a set of k points *Centers* that will be the "centers" of the k clusters in *Data*, and will minimize some notion of distance from *Data* to *Centers*.



Clustering as Finding Centers

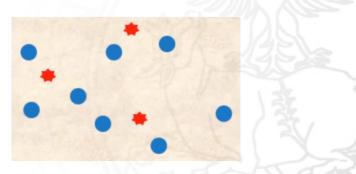
- **Goal:** partition a set **Data** into k clusters.
- Equivalent goal: find a set of k points *Centers* that will be the "centers" of the k clusters in *Data*, and will minimize some notion of distance from *Data* to *Centers*.



What is the "distance" between Data and Centers

The distance from *DataPoint* in *Data* to *Centers* is defined as the distance from *DataPoint* to the closest center

 $d(\textit{DataPoint}, \textit{Centers}) = \min_{\forall x \in \textit{Centers}} d(\textit{DataPoint}, x)$



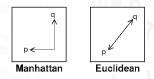
Distance from a Single DataPoint to Centers

- Different distance metrics can be used;
- The most used metrics are:
 - Euclidean distance:

$$d(p,q) = \sqrt{\sum_{i \in m} (p_i - q_i)^2}$$

Manhattan distance:

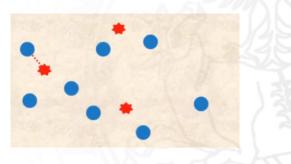
$$d(p,q) = \sum_{i \in m} |(p_i - q_i)|$$



 hereafter we will use Euclidean distance, Manhattan distance works better in case of high dimensional vectors.

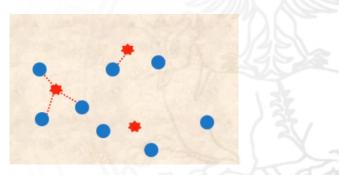
The distance from *DataPoint* in *Data* to *Centers* is defined as the distance from *DataPoint* to the closest center

 $d(DataPoint, Centers) = \min_{x \in Centers} d(DataPoint, x)$



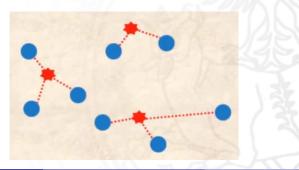
The distance from *DataPoint* in *Data* to *Centers* is defined as the distance from *DataPoint* to the closest center

 $d(DataPoint, Centers) = \min_{\forall x \in Centers} d(DataPoint, x)$



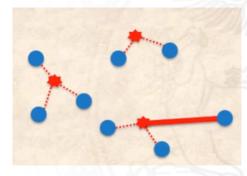
The distance from *DataPoint* in *Data* to *Centers* is defined as the distance from *DataPoint* to the closest center

 $d(DataPoint, Centers) = \min_{\forall x \in Centers} d(DataPoint, x)$



Distance from a Single DataPoint to Centers

$$MaxDistance(Data, Centers) = \max_{\forall DataPoint \in Data} d(DataPoint, Centers)$$



BIOINFORMATICS

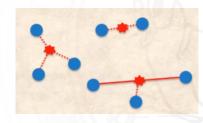
Introducing k-Center Clustering problem:

k-Center Clustering problem

Definition: Given a set of points **Data**, find k centers minimizing MaxDistance(**Data**, **Centers**)

Input: A collection of *n* vectors and an integer *k*.

Output: A set of k points **Centers** that minimizes MaxDistance(**Data**, **Centers**) over all possible choices of **Centers**



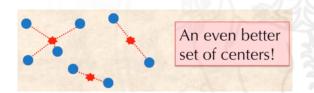
Introducing k-Center Clustering problem:

k-Center Clustering problem

Definition: Given a set of points **Data**, find k centers minimizing MaxDistance(**Data**, **Centers**)

Input: A collection of *n* vectors and an integer *k*.

Output: A set of k points **Centers** that minimizes MaxDistance(**Data**, **Centers**) over all possible choices of **Centers**



Introducing k-Center Clustering problem:

k-Center Clustering problem

Definition: Given a set of points **Data**, find k centers minimizing MaxDistance(**Data**, **Centers**)

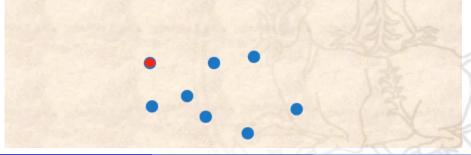
Input: A collection of n vectors and an integer k.

Output: A set of *k* points *Centers* that minimizes *MaxDistance(Data,Centers)* over all possible choices of *Centers*

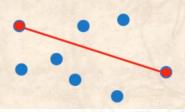
• This problem is intractable;

• Since it is a hard problem \rightarrow approximation algorithms were developed.

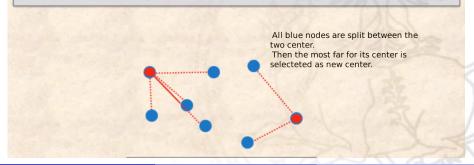
k-Center Clustering heuristic



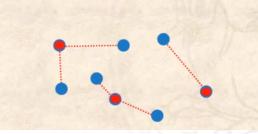
k-Center Clustering heuristic



k-Center Clustering heuristic

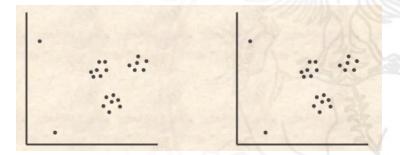


k-Center Clustering heuristic



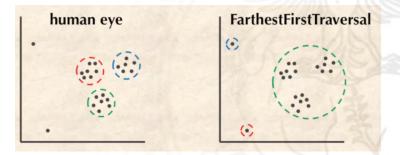
What is wrong with FarthestFirstTraversal?

- FarthestFirstTraversal selectes **Centers** that minimize MaxDistance(**Data**,**Centers**).
- But biologists are interested in typical rather than maximum deviations: maximum deviations may represent outliers (experimental errors)



What is wrong with FarthestFirstTraversal?

- FarthestFirstTraversal selectes **Centers** that minimize MaxDistance(**Data**, **Centers**).
- But biologists are interested in typical rather than maximum deviations: maximum deviations may represent outliers (experimental errors)



Clustering as optimization problem *Modifying objection function*

The maximal distance between Data and Centers: MaxDistance(Data, Centers)= max DataPoint from Data d(DataPoint, Centers) The squared error distortion between *Data* and *Centers*: *Distortion*(*Data*, *Centers*) =

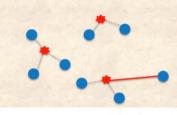
 $\sum_{DataPoint from Data} d(DataPoint, Centers)^2/n$

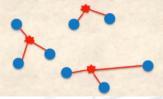
A single data point contributes to MaxDistance

All data points contribute to Distortion

k-Center Clustering Problem:	k-Means Clustering Problem:
Input: A set of points Data and an	Input: A set of points Data and an
integer k.	integer k.
Output: A set of <i>k</i> points <i>Centers</i>	Output: A set of <i>k</i> points Centers
that minimizes	that minimizes
MaxDistance(DataPoints, Centers)	Distortion(Data, Centers)
over all choices of <i>Centers</i> .	over all choices of <i>Centers</i> .

A single data point contributes to MaxDistance All data points contribute to Distortion

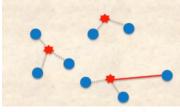


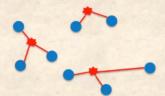


k-Center Clustering Problem:	k-Means Clustering Problem:
Input: A set of points <i>Data</i> and an	Input: A set of points Data and an
integer k.	integer k.
Output: A set of <i>k</i> points Centers	Output: A set of <i>k</i> points Centers
that minimizes	that minimizes
MaxDistance(DataPoints,Centers)	Distortion(Data, Centers)
over all choices of <i>Centers</i> .	over all choices of <i>Centers</i> .

NP-Hard for k>1

A single data point contributes to MaxDistance All data points contribute to Distortion

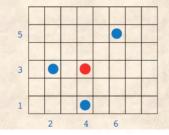




k-Means Clustering Problem

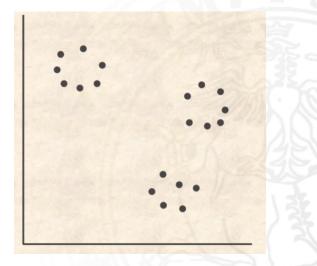
Center of Gravity Theorem: The center of gravity of points *Data* is the only point solving the 1-Means Clustering Problem.

The **center of gravity** of points *Data* is $\sum_{\text{all points DataPoint in Data}} DataPoint / #points in Data$

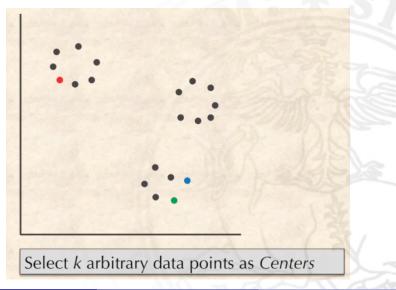


i-th coordinate of the center of gravity = the average of the *i*-th coordinates of datapoints:

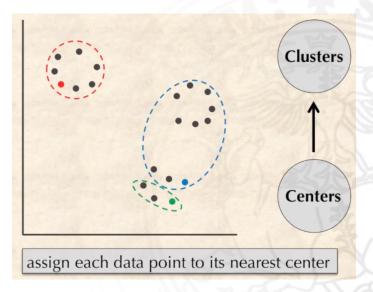
((2+4+6)/3, (3+1+5)/3) = (4, 3)



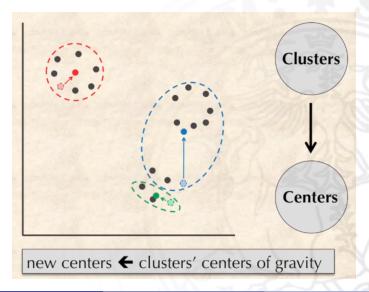
Lloyd approximation algorithm for k-Means Clustering Problem



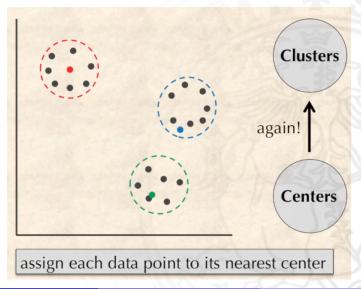
BIOINFORMATICS

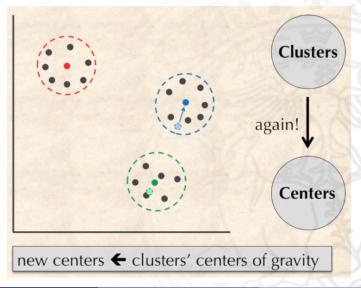


Lloyd approximation algorithm for k-Means Clustering Problem

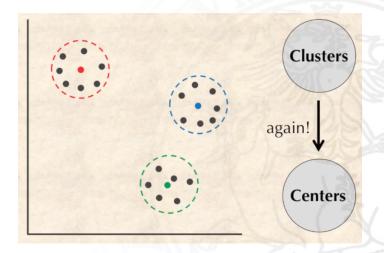


BIOINFORMATICS





Clustering as optimization problem Lloyd approximation algorithm for k-Means Clustering Problem It ends when the Centers stop to move.



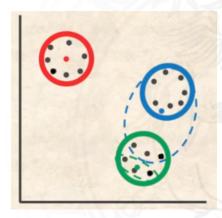
Lloyd algorithm

Select *k* arbitrary data points as *Centers* and then iteratively perform the following steps:

- **Centers to Clusters**: Assign each data point to the cluster corresponding to its nearest center (ties are broken arbitrarily).
- **Clusters to Centers**: After the assignment of data points to *k* clusters, compute new centers as clusters' center of gravity.

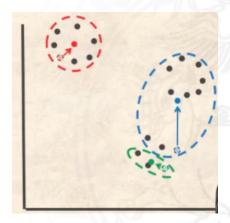
Lloyd algorithm converges!!!

- if a data point is assigned to a new center during the *Centers to Clusters* step:
 - the squared error distortion is reduced because this center must be closed to the point than the previous center.



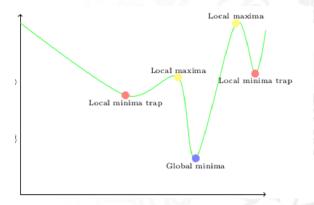
Lloyd algorithm converges!!!

- if a data point is assigned to a new center during the *Clusters to Centers* step:
 - the squared error distortion is reduced because the center of gravity is the only point minimizing the distortion.



Lloyd algorithm converges!!!

- It converges to **local minimum**. Thus several runs are required to discover the best solution;
- It can take time to converge.



How can we choose a "good" K for K-means clustering?

- There is no method for determining the exact value of K;
- One of the metrics that is commonly used to compare results across different values of K is **elbow method**
- It graphs the average internal per cluster sum of squares distance vs the number of clusters to find a visual "elbow" which is the optimal number of clusters.

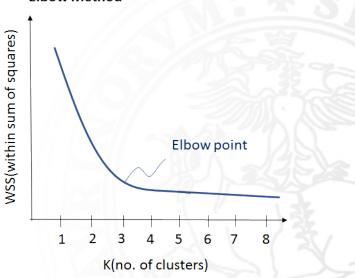
$$W_k = \sum_{r=1}^k \frac{1}{n_r} D_r \tag{1}$$

Where k is the number of clusters, n_r is the number of points in cluster r and D_r is the sum of distances between all points in a cluster:

$$D_r = \sum_{i=1}^{n_r-1} \sum_{j=i}^{n_r} (d_i - d_j)^2$$

(2)

Elbow plot



Elbow Method