
RNA-seq to estimate gene expression, read counts need to be properly normalized to 
extract meaningful expression estimates

There are two main sources of systematic variability that require normalization. 
1. RNA fragmentation during library construction causes longer transcripts to generate 

more reads compared to shorter transcripts present at the same abundance in the 
sample.

2. The variability in the number of reads produced for each run causes fluctuations in the 
number of fragments mapped across samples

Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3t more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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To account for these issues, the reads per kilobase of transcript per million mapped reads
(RPKM) metric normalizes a transcript’s read count by both its length and the total number
of mapped reads in the sample When data originate from paired-end sequencing, the 
analogous fragments per kilo- base of transcript per million mapped reads (FPKM) 

Differential Expressed Genes – Normalization
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