
RNASeq Analysis

RNA-seq can be used to build a complete map of the 
transcriptome across all cell types, perturbations
and states.

Computational methods that will be reported are indepent of the choice of 
library construtuction protocols. Note that, the «paired-end» sequencing is
an additional features crucial to provide valuable information. 



GOAL: map RNA-seq reads to a reference transcriptome

• unspliced read aligners:
• seed methods
• Burrows-Wheeler transform methods

GOAL:  reconstruct the transcriptome

• genome-guided
exon identification
genome-guided assembly

• genome- independent’ 

GOAL:  quantify gene expression

• exon intersection method
• exon union method’

• spliced aligners:
• exon first
• seed andextend.

RNASeq Analysis

Garber et al Nature Methods 2011

Computational methods needed to address RNA-seq analysis core challenges

methods to align reads directly to a reference transcriptome or genome (‘read mapping’). 

methods to identify expressed genes and isoforms (‘transcriptome reconstruction’).

methods for estimation of gene and isoform abundance, as well as methods for the analysis of differential
expression across samples (‘expression quantification’).



Mapping short RNA-seq reads

RNA-seq reads:

• are short (~36–125 bases) 
• error rates are considerable
• many reads span exon-exon junctions. 
• the number of reads per experiment is increasingly large, currently as many as hundreds

of millions.

There are two major algorithmic approaches to map RNA-seq reads to a reference transcriptome.

The first: unspliced read aligners align reads to a reference without allowing any large gaps. 
The unspliced read aligners fall into two main categories:

‘seed methods’ 
‘Burrows-Wheeler transform methods’. 



Mapping short RNA-seq reads – unspliced reads, seed idea
Seed methods such as mapping and assembly with quality find matches for short subsequences, termed ‘seeds’, 
assuming that at least one seed in a read will perfectly match the reference. Each seed is used to narrow candidate 
regions where more sensitive methods (such as Smith-Waterman) can be applied to extend seeds to full 
alignments. 



Mapping short RNA-seq reads – unspliced reads, seed idea
Seed methods such as mapping and assembly with quality find matches for short subsequences, termed ‘seeds’, 
assuming that at least one seed in a read will perfectly match the reference. Each seed is used to narrow candidate 
regions where more sensitive methods (such as Smith-Waterman) can be applied to extend seeds to full 
alignments. 



Mapping short RNA-seq reads – unspliced reads, BWT

Second approach includes Burrows-Wheeler transform methods such as Burrows-Wheeler
alignment Bowtie, which compact the genome into a data structure that is very efficient when
searching for perfect matches. When allowing mismatches, the performance of Burrows-
Wheeler transform methods decreases exponentially with the number of mismatches as they
iteratively perform perfect searches



How would you do it: 
• L2: Sequence alignment: O(m*n) 
• L3: Hashing / BLAST: O(m+n) 

– Solution until 2008 (e.g. MAQ, Li et al, GR 2008) 

• Other advanced algorithms:  
– Linear-time string matching: O(m+n). L3 addendum 
– Suffix trees and suffix arrays: O(m). L13 addendum 

• Challenge: memory requirements 
– Hash table, suffix tree/array require O(m*n) space 

• Today: Burrows-Wheeler transformation O(m) 
– Ultrafast/memory efficient. New norm since 2009. 
– Introduced in: Bowtie (Langmead GB 2009). 13 

Second Generation Mappers have Leveraged the 
Burrows Wheeler Transformation 

“…35 times faster than Maq and 300 times 
faster than SOAP under the same conditions”

Two indexing strategies for read mapping 
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Multi-seed
hashing

BWT
Burrows-
Wheeler

Transform

Today: How does the BW
transform actually work?

Burrows-Wheeler Transform (BWT) 
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• Transform: ^BANANA@ INTO: BNN^AA@A 
 
 

• Reversible 
 function inverseBWT (string s)

create empty table
repeat length(s) times

insert s as a column of table before first column of the table // first insert creates first column
sort rows of the table alphabetically 

return (row that ends with the 'EOF' character)

@
function BWT (string s)

create a table, rows are all possible rotations of s
sort rows alphabetically
return (last column of the table)

last 1st
col

pairs 2nd

col
triples 3rd

col
4mers 4thcol 5mers 5thcol 6-mers 6thcol 7-mers 7thcol 8-mers Full matrix

Last column only suffices to reconstruct entire matrix, and thus recover original string

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Key properties of Burrows-Wheeler Transform 
• Very little memory usage. Same as input (or less) 

– Don’t represent matrix, or strings, just pointers 
– Encode: Simply sort pointers. Decode: follow pointers 

• Original application: string compression (bZip2) 
– Runs of letters compressed into (letter, runlength) pairs 

• Bioinformatics applications: substring searching 
– Achieve similar run time as hash tables, suffix trees 
– But: very memory efficient ! practical speed gains 

• Mapping 100,000s of reads: only transform once 
– Pre-process once; read counts in transformed space. 
– Reverse transform once, map counts to genome coords 

17 

P is the input substring
C[c] – is how many characters occur 
before c lexographically in the 
genome
Occ(c,k)  is the number of 
occurrence of the character c before 
index k in the far right column

 Searching for an Exact Match 
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e.g. Searching for OLIS
In MANOLISKELLIS
For simplicity (here): 
- only exact matches
- Show entire matrix
In practice: only pointers

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

Pseudocode from Langmead et al, 2009. Example by Jason Ernst. 

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

OLISOLIS OLIS OLIS

Mapping short RNA-seq reads – seed idea VS BWT



Unspliced read aligners are ideal for mapping reads against a reference databases for quantification
purposes

If the exact reference transcriptome is available, Burrows-
Wheeler methods are faster than seed-based methods

when only the reference transcriptome of a distant species is
available, ‘seed methods’ can result in a large increase in 
sensitivity. 

Similarly, an increase in sensitivity using seed methods has been
observed when aligning reads to polymorphic regions in a 
species for quantification of allele-specific gene expression

Mapping short RNA-seq reads – unspliced reads

Unspliced read aligners are limited to identifying known exons and junctions, and do not allow for the 
identification of splicing events involving new exons (since they used the transcriptome as reference). 

BWT

SEED



Exon-first methods such as TopHat use a two-step process. 

1. First, they map reads continuously to the genome using the 
unspliced read aligners.

2. Second, unmapped reads are split into shorter segments and 
aligned independently.

Exon- first aligners are very efficient when only a small portion of 
the reads require the more computationally intensive second
step. 

Mapping short RNA-seq reads – spliced aligners – Exon first

Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8t longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5t�more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15t faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7t more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 
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Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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Alternatively, reads can be aligned to the entire genome, including intron-spanning reads that require
large gaps for proper placement. Several methods exist, collectively referred to as ‘spliced aligners’, that
fall into two main categories: ‘exon first’ and ‘seed and extend’.



Seed-extend methods:

1) break reads into short seeds, which are 
placed onto the genome to localize the 
alignment.

2) candidate regions are then examined with 
more sensitive methods:
i. such as the local alignment (i.e. 

Smith-Waterman algorithm)
ii. iterative extension and merging of 

initial seeds to determine the exact
spliced alignment for the read . 

Mapping short RNA-seq reads – spliced aligners – seed-extend

Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8t longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5t�more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15t faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7t more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 
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Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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Comparison

A seed- extend method takes ~8× longer (~340 CPU hours) than an exon-first 

method resulting in ~1.5× more spliced reads. However, the biological

meaning of these additional splice junctions has not been demonstrated. 

Mapping short RNA-seq reads – spliced aligners

Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8t longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5t�more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15t faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7t more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 
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Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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A potential disadvantage of exon-first approaches illustrated for a gene 

and its associated retrotransposed pseudogene. Mismatches compared to 

the gene sequence are indicated in red. Exonic reads will map to both the 

gene and its pseudogene, preferring gene placement owing to lack of 

mutations, but a spliced read could be incorrectly assigned to the 

pseudogene as it appears to be exonic, preventing higher-scoring spliced

alignments from being pursued. 



GOAL: map RNA-seq reads to a reference transcriptome

• unspliced read aligners:
• seed methods
• Burrows-Wheeler transform methods

GOAL:  reconstruct the transcriptome

• genome-guided
exon identification
genome-guided assembly

• genome- independent’ 

GOAL:  quantify gene expression

• exon intersection method
• exon union method’

• spliced aligners:
• exon first
• seed andextend.

RNASeq Analysis

Garber et al Nature Methods 2011

Computational methods needed to address RNA-seq analysis core challenges

methods to align reads directly to a reference transcriptome or genome (‘read mapping’). 

methods to identify expressed genes and isoforms (‘transcriptome reconstruction’).

methods for estimation of gene and isoform abundance, as well as methods for the analysis of differential
expression across samples (‘expression quantification’).



Defining a precise map of all transcripts and isoforms that are expressed in a particular
sample requires the assembly of these reads or read alignments into transcription units. 
This process is transcriptome reconstruction. 

Transcriptome reconstruction is a difficult computational task for three main reasons. 

1. Gene expression spans several orders of magnitude, with some genes
represented by only a few reads. 

2. Reads originate from the mature mRNA (exons only) as well as from 
the incompletely spliced precursor RNA (containing intronic
sequences), making it difficult to identify the mature transcripts. 

3. Reads are short, and genes can have many isoforms, making it
challenging to determine which isoform produced each read. 

Several methods exist to reconstruct the transcriptome, and they fall into two main
classes: ‘genome-guided’ and ‘genome- independent’ 

Transcriptome reconstruction



Genome-guided reconstruction. 
Existing genome-guided methods
can be classified in two main
categories: exon identification
and genome-guided assembly
approaches. 

Transcriptome reconstruction – genome guided, exon identification

genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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Genome-guided reconstruction. Existing genome-guided methods can be classified in two
main categories: exon identification and genome-guided assembly approaches. 

Exon identification methods were developed early when reads were short (~36 bases) 
and few aligned to exon-exon junctions. 
They first define putative exons as coverage islands, and then use spliced reads that
span across these coverage islands to define exon boundaries and to establish
connections between exons. 

Performance: they are underpowered to identify full- length structures of lowly
expressed, long and alternatively spliced genes. 

Transcriptome reconstruction – genome guided, exon identification



Genome-guided assembly methods such as Cufflinks and Scripture have been
developed. These methods use spliced reads directly to reconstruct the transcriptome

Two approaches:

Scripture Transform genome into a graph topology, which represents all possible
connections of bases in the transcriptome either when they occur consecutively or when
they are connected by a spliced read. This graph topology to reduce the transcript
reconstruction problem to a statistical segmentation problem of identifying significant
transcript paths across the graph.

Scripture provides increased sensitivity to identify transcripts expressed at low levels by 
working with significant paths, rather than significant exons

Cufflinks Transform genome into a graph topology, which connect aligned reads into
an overlap graph.

Transcriptome reconstruction – genome guided, genome guided



Scripture reports all isoforms that are compatible with the read data (maximum sensitivity), 
whereas Cufflinks reports the minimal number of compatible isoforms (maximum precision) 

Scripture enumerates all possible paths through the assembly graph that are consistent with the 
spliced reads. Its maximum sensitivity at the transcript level derived from its strategy of predicting
a near-exhaustive list of all possible splice variants for a given gene.

Transcriptome reconstruction – genome guided, genome guided



Scripture reports all isoforms that are compatible with the read data (maximum sensitivity), 
whereas Cufflinks reports the minimal number of compatible isoforms (maximum precision) 

Cufflinks chooses a minimal set of paths through the graph such that all reads are included in at
least one path. Each path defines an isoform, so this minimal set of paths is a minimal assembly of 
reads. As there can be many minimal sets of isoforms, Cufflinks uses read coverage across each
path to decide which combination of paths is most likely to originate from the same RNA. 

Defining a minimum path cover of G, 
meaning that every fragment node is
contained in some path in the cover, 
and the cover contained as few paths
as possible. 
Each path in the cover corresponded
to a set of mutually compatible
fragments overlapping each other on 
the left and right.

Transcriptome reconstruction – genome guided, genome guided



Scripture reports all isoforms that are compatible with the read data (maximum sensitivity), 
whereas Cufflinks reports the minimal number of compatible isoforms (maximum precision) 

Cufflinks chooses a minimal set of paths through the graph such that all reads are included in at
least one path. Each path defines an isoform, so this minimal set of paths is a minimal assembly of 
reads. As there can be many minimal sets of isoforms, Cufflinks uses read coverage across each
path to decide which combination of paths is most likely to originate from the same RNA. 

Defining a minimum path cover of G, 
meaning that every fragment node is
contained in some path in the cover, 
and the cover contained as few paths
as possible. 
Each path in the cover corresponded
to a set of mutually compatible
fragments overlapping each other on 
the left and right.

Transcriptome reconstruction – genome guided, genome guided



Transcriptome reconstruction – genome guided, genome guided



Transcriptome reconstruction – genome guided, genome guided



Transcriptome reconstruction – genome guided, genome guided



Transcriptome reconstruction – genome guided, genome guided

A, C, B 
A,C,E
D,C,B
D,C,E

are equiprobable transcripts



Transcriptome reconstruction – genome guided, genome guided

A, C, E
D,C,B

are the transcripts that match with the 
coverage and exon quantification data

Cuffilinks uses read coverage across each
path to decide which combination of 
paths is most likely to originate from the 
same RNA.



Genome-independent
reconstruction. Rather than mapping
reads to a reference sequence first, 
genome-independent transcriptome
reconstruction algorithms use the 
reads to directly build consensus
transcripts. Consensus transcripts can 
then be mapped to a genome or 
aligned to a gene or protein database 
for annotation purposes. The central
challenge for genome-independent
approaches is to partition reads into
disjoint components, which represent
all isoforms of a gene. 

Transcriptome reconstruction – genome independent

genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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Figure 2 | Transcriptome reconstruction methods. (a) Reads originating from two different isoforms of the 
same genes are colored black and gray. In genome-guided assembly, reads are first mapped to a reference 
genome, and spliced reads are used to build a transcript graph, which is then parsed into gene annotations. 
In the genome-independent approach, reads are broken into k-mer seeds and arranged into a de Bruijn 
graph structure. The graph is parsed to identify transcript sequences, which are aligned to the genome to 
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genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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genome, and spliced reads are used to build a transcript graph, which is then parsed into gene annotations. 
In the genome-independent approach, reads are broken into k-mer seeds and arranged into a de Bruijn 
graph structure. The graph is parsed to identify transcript sequences, which are aligned to the genome to 
produce gene annotations. (b) Spliced reads give rise to four possible transcripts, but only two transcripts 
are needed to explain all reads; the two possible sets of minimal isoforms are depicted.
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genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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Figure 2 | Transcriptome reconstruction methods. (a) Reads originating from two different isoforms of the 
same genes are colored black and gray. In genome-guided assembly, reads are first mapped to a reference 
genome, and spliced reads are used to build a transcript graph, which is then parsed into gene annotations. 
In the genome-independent approach, reads are broken into k-mer seeds and arranged into a de Bruijn 
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produce gene annotations. (b) Spliced reads give rise to four possible transcripts, but only two transcripts 
are needed to explain all reads; the two possible sets of minimal isoforms are depicted.
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A commonly used strategy is to first build a de Bruijn graph, which models overlapping subsequences, 
termed ‘k-mers’ (k consecutive nucleotides), rather than reads. This reduces the complexity associated
with handling millions of reads to a fixed number of possible k-mers. The overlaps of k – 1 bases
between these k-mers constitute the graph of all possible sequences that can be constructed. Next, 
paths are traversed in the graph, guided by read and paired-end coverage levels, eliminating false 
branch points introduced by k-mers that are shared by different transcripts but not supported by reads
and paired ends. Each remaining path through the graph is then reported as a separate transcript

Transcriptome reconstruction – genome independent

Limitations: distinguishing sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. 

To eliminate artifacts, genome- independent methods look at the coverage of different paths

Smaller values of k result in a larger number of overlapping nodes and a more complex graph, whereas
larger values of k reduce the number of overlaps and results in a simpler graph structure. An optimal
choice of k depends on coverage:

For low coverage, long or short kmers?



A commonly used strategy is to first build a de Bruijn graph, which models overlapping subsequences, 
termed ‘k-mers’ (k consecutive nucleotides), rather than reads. This reduces the complexity associated
with handling millions of reads to a fixed number of possible k-mers. The overlaps of k – 1 bases
between these k-mers constitute the graph of all possible sequences that can be constructed. Next, 
paths are traversed in the graph, guided by read and paired-end coverage levels, eliminating false 
branch points introduced by k-mers that are shared by different transcripts but not supported by reads
and paired ends. Each remaining path through the graph is then reported as a separate transcript

Transcriptome reconstruction – genome independent

Limitations: distinguishing sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. 

To eliminate artifacts, genome- independent methods look at the coverage of different paths

Smaller values of k result in a larger number of overlapping nodes and a more complex graph, whereas
larger values of k reduce the number of overlaps and results in a simpler graph structure. An optimal
choice of k depends on coverage: when coverage is low, small values of k are preferable because they
increase the number of overlapping reads contributing k-mers to the graph. But when coverage is large, 
small values of k are overly sensitive to sequencing errors and other artifacts, yielding very complex
graph structures



Transcriptome reconstruction – genome independent

To understand which are the 
correct path we can be guided by
read and paired-end coverage
levels, eliminating false branch
points



Transcriptome reconstruction – genome independent

AAA AAT AAG AAC ATG AGGACG TAGOverlap graph

Overlap graph guided by the 
set of input reads



GOAL: map RNA-seq reads to a reference transcriptome

• unspliced read aligners:
• seed methods
• Burrows-Wheeler transform methods

GOAL:  reconstruct the transcriptome

• genome-guided
exon identification
genome-guided assembly

• genome- independent’ 

GOAL:  quantify gene and isoform expression

• exon intersection method
• exon union method’

• spliced aligners:
• exon first
• seed andextend.

RNASeq Analysis

Garber et al Nature Methods 2011

Computational methods needed to address RNA-seq analysis core challenges

methods to align reads directly to a reference transcriptome or genome (‘read mapping’). 

methods to identify expressed genes and isoforms (‘transcriptome reconstruction’).

methods for estimation of gene and isoform abundance, as well as methods for the analysis of differential
expression across samples (‘expression quantification’).



Estimating transcript expression levels

How perfom the correct assignment? Some reads cannot be assigned unequivocally to a transcript.

The ‘isoform-expression methods’ such as Cufflinks, handle uncertainty by 
constructing a ‘likelihood function’ that models the sequencing process and 
identifies isoform abundance estimates that best explain the reads obtained in 
the experiment.



Probability versus Likelihood



Probability



Likelihood



Probability versus Likelihood



Estimating transcript expression levels

Reads from alternatively spliced genes may be attributable to a 
single isoform or more than one isoform. Reads are color-
coded when their isoform of origin is clear. Black reads indicate 
reads with uncertain origin. ‘Isoform expression methods’ 
estimate isoform abundances that best explain the observed
read counts under a generative model. Samples near the 
original maximum likelihood estimate (dashed line) improve
the robustness of the estimate and provide a confidence
interval around each isoform’s abundance. 



Cufflinks estimates transcript abundances using a 
statistical model in which the probability of observing
each fragment is a linear function of the abundances of 
the transcripts from which it could have originated. 

Because only the ends of each fragment are 
sequenced, the length of each may be unknown. 
Assigning a fragment to different isoforms often
implies a different length for it. Cufflinks can 
incorporate the distribution of fragment lengths
to help assign fragments to isoforms.

Estimating transcript expression levels

To estimate the transcripts abundance we need to have two inputs:



Isoform&1&:&True&abundance&measure&

Isoform&2&:&True&abundance&measure

Isoform&3&:&True&abundance&measure&

Isoform&4&:&True&abundance&measure

The goal is to estimate the true abundance measure of the 4 isoforms.

Suppose&we&have&a&gene&with&4&isoforms&and&3&alterna1vely&spliced&(AS)&exons
as&shown&above.
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Estimating transcript expression levels



Estimating transcript expression levels

Reads that could have originated from 
multiple transcripts are informative. 

Relative abundance estimation requires
“discriminatory reads”



Estimating transcript expression levels

Reads that could have originated from 
multiple transcripts are informative. 

Relative abundance estimation requires
“discriminatory reads”



Estimating transcript expression levels

The gene has three isoforms (red, green, blue) of the 
same length. There are five reads (a,b,c,d,e) mapping to 
the gene. One maps to all three isoforms, one only to 
red, and the other three to each of the three pairs of 
isoforms. Initially every isoform is assigned the same
abundance ( 1 3 , 1 3 , 1 3 ). During the expectation (E) 
step reads are proportionately assigned to transcripts
according to the isoform abundances. Next, during the 
maximization (M) step isoform abundances are 
recalculated from the proportionately assigned read
counts. Thus, for example, the abundance of red after
the first M step is estimated by 0.47 = (0.33 + 0.5 + 1 + 
0.5)/(2.33 + 1.33 + 1.33). The number of reads
associated with each transcripts as denominator 

Until the M and E steps converge



Pipeline



Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3t more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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For quantify gene expression, the two most commonly used counting schemes are: the ‘exon
intersection method’, which counts reads mapped to its constitutive exons, and the ‘exon union 
method’ which counts all reads mapped to any exon in any of the gene’s isoforms. The exon
intersection method is analogous to expression microarrays, which typically probe expression
signal in constitutive regions of each gene. Although convenient, these simplified models come at a 
cost; the exon union model underestimates expression for alternatively spliced gene, and the 
intersection can reduce power for differential expression analysis. 

Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3t more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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 displayed altered inclusion of key features, such as DNA binding 
regions, in their protein products.

RESULTS
Raw fragment counts inaccurately estimate changes in expression
Early methods for quantifying gene expression from RNA-seq data 
work by counting the sequencing library fragments that map to the 
exons of each gene and dividing the count for each gene by a scal-
ing factor based on the length of the exons. Expression levels esti-
mated using such approaches are less accurate than later methods27, 
which calculate a gene’s expression level by adding the expression 
values of its alternative isoforms3,16. We refer to the former as ‘raw 
count’ methods and the latter as ‘isoform deconvolution’ methods. 
Current tools for differential gene expression analysis use the raw 
count method, equating the change in a gene’s expression levels with 
the change in the number of fragments originating from it between 
conditions17,20,21,28.

Because the raw count method is not always accurate when calculat-
ing gene expression in a single library, we hypothesized that it would 
be inaccurate when comparing libraries. Simple examples of hypo-
thetical, alternatively spliced genes showed that the change in expres-
sion could be drastically different from the change in raw read count 
(Fig. 1 ). We compared expression levels from two popular raw count 
schemes to changes in gene expression in simulation experiments. 
When all of a gene’s isoforms are up- or downregulated between two 
conditions, raw count methods recover true change in gene expres-
sion. However, when some isoforms are upregulated and others 
downregulated, raw count methods are inaccurate (Supplementary 
Fig. 1 ). In contrast, gene expression levels calculated by isoform 
deconvolution correlated well with true gene expression even when 
relative abundance of the isoforms changed between conditions. Thus, 
identifying accurate, statistically significant expression changes at the 
resolution level of genes requires transcript-level calculations.

Cuffdiff 2
Cuffdiff 2 assumes that the expression of a transcript in each condi-
tion can be measured by counting the number of fragments generated 
by it. Thus, a change in the expression level of a transcript is measured 
by comparing its fragment count in each condition. If the chance of 
seeing a change in this count is small enough under an appropriate 
statistical model of the inherent variability in this count (say with 
odds of 1 in 100), the transcript is deemed significantly differentially 
expressed. Choosing a model that adequately controls for variability  
in sequencing depth, biological noise and splicing structure has 
been the subject of debate19. Under one of the simplest models, the 
Poisson model, the variability is estimated by calculating the mean 
count across replicates, which allows one to calculate a P-value for 
any observed changes in a transcript’s fragment count.

The Poisson model is computationally simple, but it fails to account 
for two key issues that arise in differential analysis—count uncertainty 
and count overdispersion. Count uncertainty refers to the observa-
tion that in RNA-seq experiments it is common for up to 50% of 
reads to map ambiguously to different transcripts29. This happens 
because in higher eukaryotes alternative isoforms of most genes share 
large amounts of sequence, and many genes have paralogs with high 
sequence similarity. As a result, the fragment counts for individual 
transcripts cannot be calculated exactly and must be estimated. Count 
overdispersion refers to the fact that experiments that produce count 
data are often more variable across replicates than what is expected 
according to a Poisson distribution17,20.

Our method (Fig. 2 ) addresses both of these issues by modeling 
how variability in measurements of a transcript’s fragment count 
depends on both its expression and its splicing structure. Previous 
studies observed that overdispersion in RNA-seq experiments 
increases with expression and proposed the negative binomial dis-
tribution as a means of controlling for it17,22. In contrast, ambiguity 
in mapping fragments to transcripts manifests itself in measurement 
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Figure 1 Changes in fragment count for a gene does not necessarily equal a change in expression. (a) Simple read-counting schemes sum the fragments 
incident on a gene’s exons. The exon-union model counts reads falling on any of a gene’s exons, whereas the exon-intersection model counts only reads 
on constitutive exons. (b) Both of the exon-union and exon-intersection counting schemes may incorrectly estimate a change in expression in genes with 
multiple isoforms. The true expression is estimated by the sum of the length-normalized isoform read counts. The discrepancy between a change in the union 
or intersection count and a change in gene expression is driven by a change in the abundance of the isoforms with respect to one another. In the top row, 
the gene generates the same number of reads in conditions A and B, but in condition B, all of the reads come from the shorter of the two isoforms, and thus 
the true expression for the gene is higher in condition B. The intersection count scheme underestimates the true change in gene expression, and the union 
scheme fails to detect the change entirely. In the middle row, the intersection count fails to detect a change driven by a shift in the dominant isoform for the 
gene. The union scheme detects a shift in the wrong direction. In the bottom row, the gene’s expression is constant, but the isoforms undergo a complete 
switch between conditions A and B. Both simplified counting schemes register a change in count that does not reflect a change in gene expression.
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The exon-union model counts reads falling on any of a gene’s
exons, whereas the exon-intersection model counts only reads

on constitutive exons. 

The true expression is
estimated by the sum of the 
length-normalized isoform
read counts. 

Both simplified counting schemes register a change in count
that does not reflect a change in gene expression. 

Gene quantification



In contrast, gene expression levels calculated by isoform deconvolution correlated well with 
true gene expression even when relative abundance of the isoforms changed between
conditions. Thus, identifying accurate, statistically significant expression changes at the 
resolution level of genes requires transcript-level calculations. 

Gene quantification

Cuffdiff 2 assumes that the expression of a transcript in each condition can be measured by 
counting the number of fragments generated by it. A change in the expression level of a 
transcript is measured by comparing its fragment count in each condition. If the chance of 
seeing a change in this count is small enough under an appropriate statistical model of the 
inherent variability in this count, the transcript is deemed significantly differentially
expressed. 


