RNASeq Analysis

RNA-seq can be used to build a complete map of the
transcriptome across all cell types, perturbations

and states.

Computational methods that will be reported are indepent of the choice of
library construtuction protocols. Note that, the «paired-end» sequencing is
an additional features crucial to provide valuable information.



Computational methods needed to address RNA-seq analysis core challenges

RNASeq Analysis

GOAL: map RNA-seq reads to a reference transcriptome

methods to align reads directly to a reference transcriptome or genome (‘read mapping’).
e unspliced read aligners:

 seed methods
e Burrows-Wheeler transform methods

» spliced aligners:
e exon first
 seed andextend.

GOAL: reconstruct the transcriptome
methods to identify expressed genes and isoforms (‘transcriptome reconstruction’).
 genome-guided
exon identification
genome-guided assembly

 genome- independent’

GOAL: guantify gene expression

methods for estimation of gene and isoform abundance, as well as methods for the analysis of differential
expression across samples (‘expression quantification’).

* exon intersection method Garber et al Nature Methods 2011
e exon union method’



Mapping short RNA-seq reads

RNA-seq reads:

e are short (¥36-125 bases)

* error rates are considerable

* many reads span exon-exon junctions.

* the number of reads per experiment is increasingly large, currently as many as hundreds

of millions.

There are two major algorithmic approaches to map RNA-seq reads to a reference transcriptome.

The first: unspliced read aligners align reads to a reference without allowing any large gaps.
The unspliced read aligners fall into two main categories:

‘seed methods’
‘Burrows-Wheeler transform methods’.



Mapping short RNA-seq reads — unspliced reads, seed idea

Seed methods such as mapping and assembly with quality find matches for short subsequences, termed ‘seeds’,
assuming that at least one seed in a read will perfectly match the reference. Each seed is used to narrow candidate
regions where more sensitive methods (such as Smith-Waterman) can be applied to extend seeds to full
alignments.

Conventional Read Mapping Seeds
32bp Read:
ACGTACGTCCCCTTTIACGTACGTAAAAGGGGE

Lookup Table 1 (3 cases):
ACGTACGTCCCCTTTTL***************

* %k %%k %k * JCCCCTTTTIACGTACGT % % % * % % % %
*kkkkkk*kx*k*kx**x** ACGTACGTAAAAGGGG
Lookup Table 2 (2 cases):
ACGTACGT]x # % # % % fACCTACGT]: % * % % % *

*******AbCCCTTTfF*******AAAAGGGq

Lookup Table 3 (1 case):
ACGTACGT***************4AAAAGGGq




Mapping short RNA-seq reads — unspliced reads, seed idea

Seed methods such as mapping and assembly with quality find matches for short subsequences, termed ‘seeds’,
assuming that at least one seed in a read will perfectly match the reference. Each seed is used to narrow candidate
regions where more sensitive methods (such as Smith-Waterman) can be applied to extend seeds to full
alignments.

Conventional Read Mapping Seeds
32bp Read:

ACGTACGTYCCCCTTTIPJACGTACGTAAAAGGGG

Lookup Table 1 (3 cases):
ACGTACGTICCCCTTTTk * % * % % % % % % % % % % % %

x4 % % % %k JCCCCTTTTACGTACG T 4 5 % 4 4 %

****************ECGTACGWAAAAaﬁéq

Lookup Table 2 (2 cases):

|ACGTACG3_1]* &k ok kk ,HACGTACGT* ok k ok Kk Kk

*******4bCCCTTTﬂ%*******AAAAGGGq

Lookup Table 3 (1 case):
ACGTACGﬂF**************AAAAAGGGq




Mapping short RNA-seq reads — unspliced reads, BWT

Second approach includes Burrows-Wheeler transform methods such as Burrows-Wheeler
alignment Bowtie, which compact the genome into a data structure that is very efficient when
searching for perfect matches. When allowing mismatches, the performance of Burrows-
Wheeler transform methods decreases exponentially with the number of mismatches as they
iteratively perform perfect searches
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Mapping short RNA-seq reads — seed idea VS BWT

Two indexing strategies for read mappin;
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Mapping short RNA-seq reads — unspliced reads

Unspliced read aligners are ideal for mapping reads against a reference databases for quantification
purposes

BWT If the exact reference transcriptome is available, Burrows-
Wheeler methods are faster than seed-based methods

when only the reference transcriptome of a distant species is
available, ‘seed methods’ can result in a large increase in

sensitivity.
SEED

Similarly, an increase in sensitivity using seed methods has been
observed when aligning reads to polymorphic regions in a
species for quantification of allele-specific gene expression

Unspliced read aligners are limited to identifying known exons and junctions, and do not allow for the
identification of splicing events involving new exons (since they used the transcriptome as reference).



Mapping short RNA-seq reads — spliced aligners — Exon first

Alternatively, reads can be aligned to the entire genome, including intron-spanning reads that require
large gaps for proper placement. Several methods exist, collectively referred to as ‘spliced aligners’, that

fall into two main categories: ‘ "and ‘seed and extend’.

a Exon-first approach
RNA

- |

methods such as TopHat use a two-step process.

_ —

1. First, they map reads continuously to the genome using the =1 _—_: o

unspliced read aligners. - B Exon read mapping
2. Second, unmapped reads are split into shorter segments and —_— e e

aligned independently. ﬁ ===

N

Exon- first aligners are very efficient when only a small portion of §  Spliced read mapping
the reads require the more computationally intensive second —
step. / \



Mapping short RNA-seq reads — spliced aligners — seed-extend

Seed-extend methods:

1)

2)

b

Seed-extend approach
Exon2 | RNA

Can mmm @ BN

break reads into short seeds, which are — __ —_——

placed onto the genome to localize the = T ==
alignment. §  Seed matching
candidate regions are then examined with .

more sensitive methods: ..._... ammnco  k-mer seeds

i. such as the local alignment (i.e. /// ////

Smith-Waterman algorithm)
ii. iterative extension and merging of §  Seedextend
initial seeds to determine the exact

spliced alignment for the read .
_____




Mapping short RNA-seq reads — spliced aligners

Comparison

A seed- extend method takes ~8x longer (~¥340 CPU hours) than an exon-first
method resulting in ~¥1.5x more spliced reads. However, the biological
meaning of these additional splice junctions has not been demonstrated.

¢ Potential limitations of exon-first approaches

77
Mseudogene

A potential disadvantage of exon-first approaches illustrated for a gene
and its associated retrotransposed pseudogene. Mismatches compared to
the gene sequence are indicated in red. Exonic reads will map to both the
gene and its pseudogene, preferring gene placement owing to lack of
mutations, but a spliced read could be incorrectly assigned to the
pseudogene as it appears to be exonic, preventing higher-scoring spliced
alignments from being pursued.



Computational methods needed to address RNA-seq analysis core challenges

RNASeq Analysis

GOAL: map RNA-seq reads to a reference transcriptome

methods to align reads directly to a reference transcriptome or genome (‘read mapping’).
e unspliced read aligners:

 seed methods
e Burrows-Wheeler transform methods

» spliced aligners:
e exon first
 seed andextend.

GOAL: reconstruct the transcriptome
methods to identify expressed genes and isoforms (‘transcriptome reconstruction’).
 genome-guided
exon identification
genome-guided assembly

 genome- independent’

GOAL: guantify gene expression

methods for estimation of gene and isoform abundance, as well as methods for the analysis of differential
expression across samples (‘expression quantification’).

* exon intersection method Garber et al Nature Methods 2011
e exon union method’



Transcriptome reconstruction

Defining a precise map of all transcripts and isoforms that are expressed in a particular
sample requires the assembly of these reads or read alignments into transcription units.

This process is transcriptome reconstruction.

Transcriptome reconstruction is a difficult computational task for three main reasons.

1. Gene expression spans several orders of magnitude, with some genes

represented by only a few reads.
2. Reads originate from the mature mRNA (exons only) as well as from

the incompletely spliced precursor RNA (containing intronic
sequences), making it difficult to identify the mature transcripts.

3. Reads are short, and genes can have many isoforms, making it
challenging to determine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and they fall into two main
classes: ‘genome-guided’ and ‘genome- independent’



Transcriptome reconstruction — genome guided, exon identification
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Transcriptome reconstruction — genome guided, exon identification

Genome-guided reconstruction. Existing genome-guided methods can be classified in two
main categories: exon identification and genome-guided assembly approaches.

Exon identification methods were developed early when reads were short (~36 bases)

and few aligned to exon-exon junctions.
They first define putative exons as coverage islands, and then use spliced reads that

span across these coverage islands to define exon boundaries and to establish
connections between exons.

Performance: they are underpowered to identify full- length structures of lowly
expressed, long and alternatively spliced genes.



Transcriptome reconstruction — genome guided, genome guided

Genome-guided assembly methods such as Cufflinks and Scripture have been
developed. These methods use spliced reads directly to reconstruct the transcriptome

Two approaches:

Scripture Transform genome into a graph topology, which represents all possible
connections of bases in the transcriptome either when they occur consecutively or when
they are connected by a spliced read. This graph topology to reduce the transcript
reconstruction problem to a statistical segmentation problem of identifying significant
transcript paths across the graph.

Scripture provides increased sensitivity to identify transcripts expressed at low levels by
working with significant paths, rather than significant exons

Cufflinks Transform genome into a graph topology, which connect aligned reads into
an overlap graph.



Transcriptome reconstruction — genome guided, genome guided

Scripture reports all isoforms that are compatible with the read data (maximum sensitivity),
whereas Cufflinks reports the minimal number of compatible isoforms (maximum precision)

Scripture enumerates all possible paths through the assembly graph that are consistent with the
spliced reads. Its maximum sensitivity at the transcript level derived from its strategy of predicting
a near-exhaustive list of all possible splice variants for a given gene.

Branch point 1 Branch point 2

e

Maximal set

A L

M\/\/l




Transcriptome reconstruction — genome guided, genome guided

Scripture reports all isoforms that are compatible with the read data (maximum sensitivity),
whereas Cufflinks reports the minimal number of compatible isoforms (maximum precision)

Cufflinks chooses a minimal set of paths through the graph such that all reads are included in at
least one path. Each path defines an isoform, so this minimal set of paths is a minimal assembly of
reads. As there can be many minimal sets of isoforms, Cufflinks uses read coverage across each
path to decide which combination of paths is most likely to originate from the same RNA.

b Y Mutually Defining @ minimum path cover of G,
incompatible meaning that every fragment node is
fragments contained in some path in the cover,

and the cover contained as few paths
as possible.

Minimum path cover

- — * Each path in the cover corresponded
: to a set of mutually compatible
e esges Transcripts .
P fragments overlapping each other on

——O———— :
. the left and right.
Overlap graph |



Transcriptome reconstruction — genome guided, genome guided

Scripture reports all isoforms that are compatible with the read data (maximum sensitivity),
whereas Cufflinks reports the minimal number of compatible isoforms (maximum precision)

Cufflinks chooses a minimal set of paths through the graph such that all reads are included in at
least one path. Each path defines an isoform, so this minimal set of paths is a minimal assembly of
reads. As there can be many minimal sets of isoforms, Cufflinks uses read coverage across each
path to decide which combination of paths is most likely to originate from the same RNA.

Branch point 1 Branch point 2

PR

Maximal set Minimal possible set 1
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Defining a minimum path cover of G,
meaning that every fragment node is
contained in some path in the cover,
and the cover contained as few paths
as possible.

Each path in the cover corresponded
to a set of mutually compatible
fragments overlapping each other on
the left and right.



Transcriptome reconstruction — genome guided, genome guided

Classified as

False Negative Positive

False Positive True Negative Negative

Really is

Classified as

[ True Positive ‘ False Negative Positive
Really is
| Negative

—  Sensitivity in yellow, specificity in red



Transcriptome reconstruction — genome guided, genome guided

Classified as

Classified as
False Positive True Negative Negative

Really is

. ' I False Negative Positive
- - Really is
I True Negative Negative

—  Precision in red, recall in yellow



Transcriptome reconstruction — genome guided, genome guided

Classified as

False Positive

False Negative

True Negative

Positive
Really is

Negative

Standardized equations

= gensitivity =recall=tp/t=1tp/ (tp + i)
m gpecificity =tn/n=1tn/({tn + fp)
= precision=tp/p=1tp/ (tp + )

Equations explained

= Sensitivity/recall — how good a test is at detecting the positives. A test can cheat and
maximize this by always returing “positive”.

= Specificity — how good a test is at avoiding false alarms. A test can cheat and maximize
this by always returning “negative”.

= Precision — how many of the positively classified were relevant. A test can cheat and
maximize this by only returning positive on one result it's most confident in.



Transcriptome reconstruction — genome guided, genome guided

A CB
A,CE
D,C,B
D,C,E

are equiprobable transcripts



Transcriptome reconstruction — genome guided, genome guided
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Cuffilinks uses read coverage across each

path to decide which combination of A, C, E are the transcripts that match with the

paths :NVXOSt likely to originate from the D,C,B coverage and exon quantification data
same .



Transcriptome reconstruction — genome independent

Genome-independent
reconstruction. Rather than mapping
reads to a reference sequence first,
genome-independent transcriptome
reconstruction algorithms use the
reads to directly build consensus
transcripts. Consensus transcripts can
then be mapped to a genome or
aligned to a gene or protein database
for annotation purposes. The central
challenge for genome-independent
approaches is to partition reads into
disjoint components, which represent
all isoforms of a gene.

Sequence-fragmented RNA
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Transcriptome reconstruction — genome independent

A commonly used strategy is to first build a de Bruijn graph, which models overlapping subsequences,
termed ‘k-mers’ (k consecutive nucleotides), rather than reads. This reduces the complexity associated
with handling millions of reads to a fixed number of possible k-mers. The overlaps of k— 1 bases
between these k-mers constitute the graph of all possible sequences that can be constructed. Next,
paths are traversed in the graph, guided by read and paired-end coverage levels, eliminating false
branch points introduced by k-mers that are shared by different transcripts but not supported by reads
and paired ends. Each remaining path through the graph is then reported as a separate transcript

Limitations: distinguishing sequencing errors from variation, and finding the optimal balance
between sensitivity and graph complexity.

To eliminate artifacts, genome- independent methods look at the coverage of different paths

Smaller values of k result in a larger number of overlapping nodes and a more complex graph, whereas
larger values of k reduce the number of overlaps and results in a simpler graph structure. An optimal
choice of k depends on coverage:

For low coverage, long or short kmers?



Transcriptome reconstruction — genome independent

A commonly used strategy is to first build a de Bruijn graph, which models overlapping subsequences,
termed ‘k-mers’ (k consecutive nucleotides), rather than reads. This reduces the complexity associated
with handling millions of reads to a fixed number of possible k-mers. The overlaps of k— 1 bases
between these k-mers constitute the graph of all possible sequences that can be constructed. Next,
paths are traversed in the graph, guided by read and paired-end coverage levels, eliminating false
branch points introduced by k-mers that are shared by different transcripts but not supported by reads
and paired ends. Each remaining path through the graph is then reported as a separate transcript

Limitations: distinguishing sequencing errors from variation, and finding the optimal balance
between sensitivity and graph complexity.

To eliminate artifacts, genome- independent methods look at the coverage of different paths

Smaller values of k result in a larger number of overlapping nodes and a more complex graph, whereas
larger values of k reduce the number of overlaps and results in a simpler graph structure. An optimal
choice of k depends on coverage: when coverage is low, small values of k are preferable because they
increase the number of overlapping reads contributing k-mers to the graph. But when coverage is large,
small values of k are overly sensitive to sequencing errors and other artifacts, yielding very complex
graph structures



Transcriptome reconstruction — genome independent
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Transcriptome reconstruction — genome independent

CTA =——p TAT
R : TGCAAGCA + *

R : AAGCATGC

R : CATGCTAT

TGC -w— ATG GCT

— A

Overlap graph guided by the
set of input reads

Example: k=3,

Overlap graph ‘ ||

R

e ~

— _,:?"».__ =T - i .\\_ ‘-‘--A
. ~ " <
‘—»,_._l;" -\\1—1‘ ‘\\\‘ \"'::.f- / \ .,/'(: .

Y | | |
." | f ',

" l“' ‘v "I‘ v ; “IL v ‘l 'I, v 'I“ L
AAA AAT AAG AAC ATG AGGACG T
| |



Computational methods needed to address RNA-seq analysis core challenges

RNASeq Analysis

GOAL: map RNA-seq reads to a reference transcriptome

methods to align reads directly to a reference transcriptome or genome (‘read mapping’).
e unspliced read aligners:

 seed methods
e Burrows-Wheeler transform methods

» spliced aligners:
e exon first
 seed andextend.

GOAL: reconstruct the transcriptome
methods to identify expressed genes and isoforms (‘transcriptome reconstruction’).
 genome-guided
exon identification
genome-guided assembly

 genome- independent’

GOAL: quantify gene and isoform expression

methods for estimation of gene and isoform abundance, as well as methods for the analysis of differential
expression across samples (‘expression quantification’).

* exon intersection method Garber et al Nature Methods 2011
e exon union method’



Estimating transcript expression levels

How perfom the correct assignment? Some reads cannot be assigned unequivocally to a transcript.

Aligned -
Fragments

Genome «--

Isoform A G — D — D

Isoform B 5 —

The ‘isoform-expression methods’ such as Cufflinks, handle uncertainty by
constructing a ‘likelihood function’ that models the sequencing process and

identifies isoform abundance estimates that best explain the reads obtained in
the experiment.



Probability versus Likelihood

In this case, let’s imagine that this is a distribution of
mouse weights.

On the low end, we
have 24 grams... we have 40 grams...

/ \

24 grams 32 grams 40 grams

...on the high end,

R

—

It has a mean of 32 ...and a standard
grams... deviation of 2.5.



Probability The probability that

we will weigh a
randomly selected
mouse between 32

and 34 grams...

—
24 grams 32 grams 40 grams

In this case, the area
...is the area under under the curve = 0.29,
the curve between meaning there’s a 29%
32 and 34 grams. chance a randomly
selected mouse will
weigh between 32 and ,
34 grams.

24 grams 32 grams 40 grams

priweight between 32 and 34 grams | mean = 32 and standard deviation = 2.5)



Likelihood

To talk about a likelihood,
you assume that you have
already weighed your mouse

So here’s our mouse. It
weighs 34 grams.

24 grams 32 grams 40 grams

The likelihood of

0.15 ...and that value is 0.12 weighing a 34 gram
01 . / mouseis...
.05
0
24 grams 32 grams 40 grams

L(mean = 32 and standard deviation = 2.5 | mouse weighs 34 grams)



Probability versus Likelihood

Probabilities are the areas
under a fixed distribution...

pr( data | distribution )

Likelihoods are the y-axis
values for fixed data points
with distributions that can be
moved...

L( distribution | data )

In summary...




Estimating transcript expression levels

---—— - - Isoform 1

- — } - --- Isoform 2

Likelihood of isoform 2

Transcript expression method

25%

‘ f T I
0% 25% 100%

Confidence interval

Isoform 1

Isoform 2

Reads from alternatively spliced genes may be attributable to a
single isoform or more than one isoform. Reads are color-
coded when their isoform of origin is clear. Black reads indicate
reads with uncertain origin. ‘Isoform expression methods’
estimate isoform abundances that best explain the observed
read counts under a generative model. Samples near the
original maximum likelihood estimate (dashed line) improve
the robustness of the estimate and provide a confidence
interval around each isoform’s abundance.



Estimating transcript expression levels

Abundance estimation
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Transcript coverage
and compatibility

Because only the ends of each fragment are
sequenced, the length of each may be unknown.
Assigning a fragment to different isoforms often
implies a different length for it. Cufflinks can
incorporate the distribution of fragment lengths
to help assign fragments to isoforms.

Cufflinks estimates transcript abundances using a
statistical model in which the probability of observing
each fragment is a linear function of the abundances of
the transcripts from which it could have originated.

To estimate the transcripts abundance we need to have two inputs:

Inseart variabdity
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Estimating transcript expression levels
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Suppose we have a gene with 4 isoforms and 3 alternatively spliced (AS) exons
as shown above.

| | | |
Iso%orm 1:True a!ungance measure @

AS exons

!

Isoform 2 : True abundance measure

Isoform 3 : True abundance measure

T
Isoform 4 : True abundance measure

0,
0,

e4

The goal is to estimate the true abundance measure of the 4 isoforms.




Estimating transcript expression levels
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Estimating transcript expression levels
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Reads that could have originated from
multiple transcripts are informative.

Relative abundance estimation requires
“discriminatory reads”
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Estimating transcript expression levels

0.33 . aligned reads
transcript .. with proportional
abundances ®© © @O - - D assignmentto

— b —_— — transcripts

E-step e

> blug ==———------ transcripts

green se——cccccsccnce e — aligned to

req e—e-ee-eae- — - - - e - — genome

033 033
genome
M-step
0.27 .

The gene has three isoforms (red, green, blue) of the
same length. There are five reads (a,b,c,d,e) mapping to
the gene. One maps to all three isoforms, one only to
red, and the other three to each of the three pairs of
isoforms. Initially every isoform is assigned the same
abundance (13,13,13). During the expectation (E)
step reads are proportionately assigned to transcripts
according to the isoform abundances. Next, during the
maximization (M) step isoform abundances are
recalculated from the proportionately assigned read
counts. Thus, for example, the abundance of red after
the first M step is estimated by 0.47 =(0.33+0.5+1 +
0.5)/(2.33 + 1.33 + 1.33). The number of reads
associated with each transcripts as denominator

. Until the M and E steps converge



Pipeline
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Gene quantification

For quantify gene expression, the two most commonly used counting schemes are: the ‘exon
intersection method’, which counts reads mapped to its constitutive exons, and the ‘exon union
method’ which counts all reads mapped to any exon in any of the gene’s isoforms. The exon
intersection method is analogous to expression microarrays, which typically probe expression
signal in constitutive regions of each gene. Although convenient, these simplified models come at a
cost; the exon union model underestimates expression for alternatively spliced gene, and the
intersection can reduce power for differential expression analysis.

== — — = 104« * Exon union model

Transcript model
108
Isoform 1 I
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Gene quantification

Isoform A
Isoform B ]
L 1 - |_||—|
L e e
Condition A Condition B
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Log fold-change
(union count)

Log fold-change
(intersect count)

The exon-union model counts reads falling on any of a gene’s
exons, whereas the exon-intersection model counts only reads

Exon-union
model

S Exon-intersection

model

Log fold-change
(true expression)

log, (%) =0.19

10
|°92(6 L 4> 0.32
L *tar

|
|

log, <%) =0

|
|

Both simplified counting schemes register a change in count
that does not reflect a change in gene expression.

on constitutive exons.

The true expression is
estimated by the sum of the
length-normalized isoform
read counts.

Trapnell et al Nature Biotech 2013



Gene quantification

In contrast, gene expression levels calculated by isoform deconvolution correlated well with
true gene expression even when relative abundance of the isoforms changed between
conditions. Thus, identifying accurate, statistically significant expression changes at the
resolution level of genes requires transcript-level calculations.

Cuffdiff 2 assumes that the expression of a transcript in each condition can be measured by
counting the number of fragments generated by it. A change in the expression level of a
transcript is measured by comparing its fragment count in each condition. If the chance of
seeing a change in this count is small enough under an appropriate statistical model of the
inherent variability in this count, the transcript is deemed significantly differentially
expressed.



