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Single Longer reads 3 replicates For quality control Avoids confounding Sequence quality,  Read 3’ bias, Correlation,
Vs better for isoform  or power analysis  and library-size experimental factors GC content, uniformity, biotypes, PCA,
paired-end analysis software normalization with technical factors K-mers, duplicates GC content low-counts batch effects
(b) Core-analysis
Transcriptome profiling Differential expression Interpretation
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Mapping Compare to Transcript-level, Counts, Low-count filter, Parametric Splicing events, Overrepresented
or existing gene-level, RPKM/FPKM, bias removal, vs. isoform expression functions, GSEA,
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(c) Advanced-analysis
Visualization Other RNA-seq Integration
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Fig. 1 A generic roadmap for RNA-seq computational analyses. The major analysis steps are listed above the lines for pre-analysis, core analysis
and advanced analysis. The key analysis issues for each step that are listed below the lines are discussed in the text. a Preprocessing includes
experimental design, sequencing design, and quality control steps. b Core analyses include transcriptome profiling, differential gene expression,
and functional profiling. ¢ Advanced analysis includes visualization, other RNA-seq technologies, and data integration. Abbreviations: Ch/P-seq
Chromatin immunoprecipitation sequencing, eQTL Expression quantitative loci, FPKM Fragments per kilobase of exon model per million mapped
reads, GSEA Gene set enrichment analysis, PCA Principal component analysis, RPKM Reads per kilobase of exon model per million reads, sQTL
Splicing quantitative trait loci, TF Transcription factor, TPM Transcripts per million




RNA-seq Applications
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RNA-Seq experiments

@ = anormal neural cell @ =2 mutated neural cell

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.

The mutated cells behave differently than the normal cells.
We want to know what genetic mechanism is causing the difference...

This means we want to look at differences in gene expression.



RNA-Seq experiments

@& =anormal neural cell

A bunch of
normal neural
cells.

_&r_ﬂ/
!

We can use RNA-seq to measure
gene expression in normal cells...



RNA-Seq experiments

& =anormal neural cell @ = a2 mutated neural cell

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.

Genel Gene2 Gene3

Each chromosome has a bunch of genes...



RNA-Seq experiments

@ = anormal neural cell @ = a mutated neural cell

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.

High throughput sequencing tells us which genes are
active, and how much they are transcribed.
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RNA-Seq experiments

@ =anormal neural cell @ = a mutated neural cell

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.

Some genes are active...

These wavy lines
represent mRNA
transcripts.
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RNA-Seq experiments

@ =anormal neural cell @ - a mutated neural cell

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.

A A
A A A A

I

We can use RNA-seq to measure ... then use it to measure gene
gene expression in normal cells... expression in mutated cells...

_&I"_IL\/
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RNA-Seq experiments

& =anormal neural cell

~_ /

Genel: No difference between normal and mutated cells.

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.

@ = a mutated neural cell

<



RNA-Seq experiments

@ = anormal neural cell @ = a mutated neural cell

A bunch of
A bunch of
normal neural
mutated
cells.
neural cells.
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Gene2: A big difference between normal and mutated cells.



RNA-Seq experiments

@ = anormal neural cell @ =2 mutated neural cell

A bunch of

A bunch of
normal neural
mutated
cells.
neural cells.

Y
A A

A
'\

/

Gene3: A subtle difference between normal and mutated cells.



Input Data Structure
Fastq File

@D44TDFP1_1:1:1101:1320:1948/1

NGGAGGCAGAGGCAGGTGGATTTCTGAGTTCAAGGCCAGCCTGGTCTACAAAGTGAGTNCCAGGACGGCCAGGGCTATACAGAGAAACAGAGAAACCCTGT
+

#1=DDDDDHFHHHIIIAEHGHIIGIIGHGHHIIIIGIIGHIIIIFHIIIIIIIFHIIG#-5@EHHHECCBBBBBBBBCECECCCCCCCCCCCCCCCABBCC
@D44TDFP1_1:1:1101:1817:1955/1

NGGGTTGGGGAGGAGAAGATGACGACATTTTTAACAGATTAGTTCATAAAGGCATGTCNATATCACGTCCAAATGCTGTAGTAGGGAGGTGTCGAATGATC

+

#1=DBDDFHHHHHGIIJJJJJIIJHGIIIIIIIIIIII1IIIII1III1II]1]II]IHHH#- ; BFAEEDEDDDDDDDCDDDDDDEEDDCBD<BCDDDDDDDDD
@D44TDFP1_1:1:1101:1790:1968/1
GAGGCCAGGTTGAGGATTTTGGAGGACAGAGGGATAAGAAAAATAAGTGGAACAGGAANGGCATTAGCAAAAGCAGAAAAGTATGAACACAAAAGTGAAGT

.

CCCFFFFFHFFHHJIJIJHIJJIGHIIJIIGHIIHIII]]]1111]1]11GI)]]]11))))#-; EHHHHFFFFFFEEECEDDDDACDEDEDDDDDDDDDDDEDC
@D44TDFP1_1:1:1101:1870:1994/1
AGGGGCTGAGTGACTCGGGGCCACATAGGCAGCAAGGAGCAAGGGGCCTGAGCAAGAGNTACCATATTTACCTCAGTGTGTGAAGATCATTTGCCCAGGCT
S

CCCFFFFFHHHHHIJJJJJJJJIJJIJJIIIIIIIIIIGIIIII))FGHHHFFFFFEE#, 5=BDDDDEFEEDDDDDDDEDDDDEDDDDDDEEEDDDDDDDD
@D44TDFP1_1:1:1101:2079:1923/1
NGCAGNCCNAGGTCTGAGTTCCAAGGACANGTATGTGAAAGGCCTGATTGAGGGCAAANCGGATCCCTACGCGCTCGTCCGTGTGGGCACCCAGACGTTCT
.
#0;00#20#2=7=0007070000000CRRH L ; 7775>7777777777777777777777#- 77777777 7==<<<<< ] €< €<<<< ] <<<<<C<C<CLL I <<<<




With the set of reads obtained from the sequencing we need to:

* Filter out garbage reads

* Align the high quality reads to a genome

* Count the number of reads per gene



With the set of reads obtained from the sequencing we need to:

Garbage reads are:

e Filter out garbage reads 1) Reads with low quality ba.se calls |
2) Reads that are clearly artifacts of the chemistry.

* Align the high quality reads to a genome

* Count the number of reads per gene



Inspecting raw data

Fastg QC

» Before starting a RNA-seq analysis it is better to have a look at the
overall quality of raw data.

* FastQC is a java tool that allows quality controls at the level of various
type of sequencing files.



Low quality base calls

Inspecting raw data

@ Basic Statistics Quality scores across all bases (lllumina 1.5 encoding)
@ Per base sequence quality 34

HERR
, o o I TTTTTT
@ Per sequence quality scores 32 !! ! Il!III.lllll IIII III Red median value
30 [ [Tt ||
@ Per base sequence content 58 o [~ IIII HHEHE Blue mean value
@ Per base GC content 26 ] L] | ||
@ Per sequence GC content 24 TLILIL H‘“\
@ Per base N content 22 1T \* BaCkground code:
20 T Green: good
@ Sequence Length Distribution 18 4 L Orange: reasonable
@ Sequence Duplication Levels 16 - Red: poor
@ Overrepresented sequences 14 1
12
@ Kmer Content
10 .

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35
Position in read (bp)
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Low quality base calls


With the set of reads obtained from the sequencing we need to:

Garbage reads are:

e Filter out garbage reads 1) Reads with low quality be?se calls |
2) Reads that are clearly artifacts of the chemistry.

A typical read is a DNA fragment...

v

\/

...plus adapter sequences...

...but sometimes the adapters
just bind to each other and the WS This is a garbage read...
“read” is just adapter sequence.



| n%BeCtl ng raW d ata Sequence content across all bases

XT RNAseq
%C
90 %A
80
70 The random hexamer
primers have been shown
60 to cause mismatches in
the begining of the
50 [llumina RNA-seq redas.
40 The quality associated to
these positions are good.
20 :
The first bases can be
trimmed by a dedicated
20 software
10
0

1224567 8% 11 12 15 17 1% 21 23 25 27 2% 31 332 35 327 329 41 42 45 47 48
Position in read (bp)



Inspecting raw data

oozl
miRNAseq
Sequence content across all bases
100
ty %T
ores 90 %F
ent %G
80
. 70
- FastQC plots base compositions along the reads
_ which shuold produce flat line where the amount of
e each base resembles that of the organism.
evels
cas 40 If the difference between A and Tor Gand Cis
bigger than 10% at any read position, a warning is
30 reported.
20
10
0

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35
Position in read (bp)



Inspecting raw data

100

a0

80

70

&0

50

40

30

20

10

Sequence Duplication Lewvel >= 91.92%

4 5 & 7

Sequence Duplication Lewel

MiRNAseq

FDuplicate relative to unigque

9 10+

Most of the reads should be unique.

High level of identical reads can indicate
PCR overamplification but in the context
of RNA-seq the duplicates are the natural
conseguence of sequencing highly
expressed transcripts.



Align the reads with respect to the genome sequence

Genome: ‘ ‘ ' ‘
¥

gattacataccagga...

gattac attaca ttacat
tacata acatac catacc
atacca taccag accagg
ccagga cagga...

v

Index of all the

fragments and
locations

A sequenced
read:

v

ACACGACGATGAG. ..

v

Split the ACACGA CGACGA
read into CACGAC GACGAT
fragments: ACGACG ACGATG



Align the reads with respect to the genome sequence

Genome: " ” Asequenced
read:

gattacataccagga... ACACGACGATGAG. ..

gattac attaca ttacat ACACGA CGACGA

tacata acatac catacc CACGAC GACGAT

atacca taccag accagg ACGACG ACGATG

ccagga cagga... /
¢ The genome fragments that

Index of all the matched the read fragments
fragments and _ ‘ ‘ “‘/ will determine a location
(chromosome and position)
in the genome.

locations




Align the reads with respect to the genome sequence

Genome: 3 ‘ ‘ ‘
¢

gattacataccagga...

gattac
tacata
atacca
ccagga

attaca ttacat
acatac catacc
taccag accagg
cagga...

A sequenced
read:

v

ACACGACGATGAG. ..

XCCAC GACGAT
/ ACGACG ACGATG

Then this fragment won’t match anything in
the index, but the other fragments will, and
we will still be able to figure out where the
read came from.



Count the reads per gene

Once we know the chromosome and
“ position for a read, we can see if it falls
within the coordinates of a gene (or some

\)ther interesting feature.)

Xkr4d — Chromosome 1, position: 3204563-3661579
Rpl — Chromosome 1, position: 4280927-4399322

etc.. (for all 20,000 genes in the genome)



Count the reads per gene

Gene Samplel Sample2 Sample3..
A1BG 30 5 13...
A1BG-AS1 24 10 18...
A1CF 0 0 0...

A2M 5 9 7...
AZ2M-AS1 3563 5771 4123..
AZ2ML1 13 8 7.

\

After you count the reads per gene, you end up
with a matrix of numbers like this...

Gene Samplel Sample2 Sample3..
A1BG 30 5 13..
A1BG-AS1 24 10 18...
A1CF 0 0 0...

A2M 5 9 7...
A2M-AS1 3563 5771 4123..
A2ML1 13 8 1o

“Bulk” RNA-seq, where a “sample” is the average
of a pool of cells (usually 6 million cells), might
have 3 “normal” samples and 3 “disease state”

samples, or 6 total. \*
There are usually betw 800+ samples.




Count the reads per gene

Gene Samplel Sample2 Sample3..
A1BG 30 5 13...
A1BG-AS1 24 10 18...
Al1CF 0 0 0...
A2M 5 9 7...
AZ2M-AS1 3563 5771 4123..
AZ2ML1 13 8 ...
After you count the reads per gene, you end up
with a matrix of numbers like this...

Gene Samplel Sample2 Sample3..

A1BG 30 5 13...

A1BG-AS1 24 10 18...

Al1CF 0 0 0..

A2M 5 9 7...

AZ2M-AS1 3563 5771 4123...

A2ML1 13 8 f

“Single-cell” RNA-seq
treats each cell like an

individual sample, so it can
| generate a lot of samples.
There are usually between 6 anmples.




(a) Pre-analysis

Experimental design Sequencing design Quality control

A A A
[ N F )
Library Sequencing Replicate number Randomization @ Randomization 2 Read

type length and sequencing depth Spike-ins? library prep sequencing ru Raw reads alignment Quantification Reproducibility

Single Longer reads 3 replicates For quality control Avoids confounding Sequence quality,  Read 3’ bias, Correlation,
Vs better for isoform  or power analysis  and library-size experimental factors GC content, uniformity, biotypes, PCA,
paired-end analysis software normalization with technical factors K-mers, duplicates GC content low-counts batch effects
(b) Core-analysis
Transcriptome profiling Differential expression Interpretation
- N - N h
Read Transcript Quantification Quantification . ) . . Alternative . -
alignment discovery e T Preprocessing Differential expression splicing analysis Functional profiling
* ~
L
Mapping Compare to Transcript-level, Counts, Low-count filter, Parametric Splicing events, Overrepresented
or existing gene-level, RPKM/FPKM, bias removal, vs. isoform expression functions, GSEA,
assembly annotations exon-level TPM normalization non-parametric pathway analysis
(C) Advanced-analysis
Visualization Other RNA-seq Integration
A A A
C A C N )
Genome Sashimi plots, Small and other ~ Gene fusion AT Single-cell eQTL/sQTL Chromatin TF binding Proteomics/
browser splice graphs, etc. non-coding RNAs  discovery 9 analysis (e.g. ATAC-seq) (e.g. ChIP-seq) metabolomics

s S b 4 S b $ d b b—»

Fig. 1 A generic roadmap for RNA-seq computational analyses. The major analysis steps are listed above the lines for pre-analysis, core analysis
and advanced analysis. The key analysis issues for each step that are listed below the lines are discussed in the text. a Preprocessing includes
experimental design, sequencing design, and quality control steps. b Core analyses include transcriptome profiling, differential gene expression,
and functional profiling. ¢ Advanced analysis includes visualization, other RNA-seq technologies, and data integration. Abbreviations: Ch/P-seq
Chromatin immunoprecipitation sequencing, eQTL Expression quantitative loci, FPKM Fragments per kilobase of exon model per million mapped
reads, GSEA Gene set enrichment analysis, PCA Principal component analysis, RPKM Reads per kilobase of exon model per million reads, sQTL
Splicing quantitative trait loci, TF Transcription factor, TPM Transcripts per million




Reproducibility - PCA

This PCA plot shows clusters of cell types.

This graph was drawn from single-cell RNA-seq.
There were about 10,000 transcribed genes in each cell.

Each dot represents a single-cell and its transcription profile

C The general idea is that cells with similar transcription NPC
150 should cluster. y GW18
Blood cells ® 2339 » Gw21
1004 « GW21+43
o ."o B e Sy
g X "":k' . ® Kera @ hiPSC
i § o - 5 . .: xX B
Piuripotont colls ’... o.’:o .m
3 ql. S A ":' .~7 o m * ..} l“. l"o e G :
.w’ .“ -~ . - \._‘ ‘. a E » . . - >
. f « ° - Neural cells
-‘w» S o - §
Dermal or epsdermal cells
-‘w 2 4 A ' A ' A J
-150 -100 -50 0 50 100 150 200 250
PC1

Pollen et al. Nature Biotechnology 2014



Reproducibility - PCA

How does transcription from 10,000 genes get compressed to a single dot on a graph?

PCA is a method for compressinf a loto fo data into somenthing that captures the essence of the original data.

1-Dimension (1-D) = a number line

IR A S A R IR IR I S A o = S I I S I 2 A

0 5 10 15 20 oL

A pretend RNA-seq data set for a single ce

Gene: Reads
A 10
B U

C 14



Reproducibility - PCA

1-Dimension (1-D) = a number line

20 etc...




Reproducibility - PCA

1-Dimension (1-D) = a number line

20 etc...




Reproducibility - PCA

1-Dimension (1-D) = a number line

20 etc...




Reproducibility - PCA
1-Dimension (1-D) = a number line

B A C
Gt B B
0 5 10 15 20 etc...

A pretend RNA-seq data set for a single cell:

Gene:  Reads:

A 10 If we plotted all genes, we might
&) 0 see something like this

» 14

B
Low High

A uniform distribution of transcripts



Reproducibility - PCAY; e nsion (1-D) = a number line

B A C
| VOETEENAEY WY D S S S .
0 5 10 15 20 etc...

A pretend RNA-seq data set for a single cell:

Gene: Reads:
A 10 If we plotted all genes, we might
8 0 see something like this or this.

- /
PYVVVPPPITVVPPPPPrrprrme - - - - Yo - - -

Low High Low High

A uniform distribution of transcripts A non-uniform distribution of transcripts
(some genes are low, some are high)



Reproducibility - PCA

15
Cell2 10

5

2-D (a normal graph)

Cell 1

etc...



Reproducibility - PCA 2-D (a normal graph)

15

Cell2 10

0 5 10 15 20 etc...
Cell 1
A pretend RNA-seq data set for two single cells:

Gene: Celll Reads: Cell2 Reads:
A 10 8

B 0 2

C 14 10



Reproducibility - PCA
2-D (a normal graph)

15
Cell2 10 A
: 4
5
:
0 5 10 15 20 etc..

Cell 1
A pretend RNA-seq data set for two single cells:

Gene: 2 Reads:
A O



Reproducibility - PCA

2-D (a normal graph)

15

Cell2 10

10 15
Cell 1
single cells:

Cell1Reads: Cell2 Reads:

A pretend RNA-seq data set for t

Gene:
A



Reproducibility - PCA

2-D (a normal graph)

15
Cell2 10
5
Cell 1
A pretend RNA-seq data set for two singlejcells:
Gene: Celll Reals:  Cell2 Reads:
A
B



R ducibility - PCA
eproducibility 2-D (a normal graph)

15

Cell2 10 If we plotted all of the genes, we might see...

0 5 10 15 20 etc...
Cell 1
A pretend RNA-seq data set for two single cells:

Gene: Celll Reads: Cell2 Reads:
A 10 8

B 0 2

C 14 10



Reproducibility - PCA
2-D (a normal graph)

15 ‘

Celid 10 ‘ ' | Theexpression in the
- " two cells is correlated.

Cell1
A pretend RNA-seq data set for two single cells:

Gene:  Celll Reads: Cell2 Reads:
A 10 8

B 0 2

C 14 10



Reproducibility - PCA

Cell2 10 -

2-D (a normal graph)

Cell 1
A pretend RNA-seq data set for two single cells:
Gene: Celll Reads: Cell2 Reads:
A 10 8
B 0 2
C 14 10

The expression in the
two cells is not
correlated.



Reproducibility - PCA
3-D (a fancy graph that has depth)

15
Cell2 10
Cell 3
5
0 5 10 15 20 etc...
Cell1

A pretend RNA-seq data set for three single cells:

Gene: Celll Reads: Cell2 Reads: Cell3 Reads:
A 10 8 8

B 0 2 4

C 14 10 12



Reproducibility - P%—D (a fancy graph that has depth)

15

You get the idea....

Cell2 10

Cell 1l
A pretend RNA-seq data set for three single cells:

Gene: ll1 Reads: o||2 Reads: 213 Reads:
SO NN OO
’ ’

C 14 10 12



Reproducibility - PCA
Dimensions So Far...
* 1cell =1-D graph (number line)
» 2 cells = 2-D graph (normal x/y graph)
* 3 cells = 3-D graph (fancy graph with depth)

* 4 cells =4-D graph (you can’t draw it)



Reproducibility - PCA
Dimensions So Far...

* 1cell =1-D graph (number line)

2 cells = 2-D graph (normal x/y graph)

3 cells = 3-D graph (fancy graph with depth)

4 cells = 4-D graph (you can’t draw it)

* 200 cells = 200-D graph (etc..)



Reproducibility - PCA __ . .
Dimensions So Far...

* 1cell =1-D graph (number line)

» 2 cells = 2-D graph (normal x/y graph)

* 3 cells = 3-D graph (fancy graph with depth)
* 4 cells =4-D graph (you can’t draw it)

* 200 cells = 200-D graph (etc..)

Are all those dimensions super important? Or are some more important than others?



Reproducibility - PCA
Hypothetically Speaking... what if we had 2-cell

data that looked like this:

Almost all of the variation in the data is
from left to right

wr | & ® g oevt

Read Counts

Cell 1

Read Counte



Repmduc'b'th_oF;gétically Speaking... what if we had 2-cell
data that looked like this:

2-D

e % ¢ %o Le0N%,

Cell 2 In this case, we can take 2-D data
Read and display it on a 1-D graph
Counts without too much information
loss.

Both graphs say, “the important

Cell 1
Read Counts \. variation is left to nght”,
1-D

0 5 10 15 20 etc...

Some dimensions are more important the others


Francesca Cordero
Some dimensions are more important the others


Reproducibility - PCA
What does all of this have to do with PCA?

* PCA takes a dataset with a lot of dimensions (i.e. lots of cells)
and flattens it to 2 or 3 dimensions so we can look at it.

- |t tnies to find a meaningful way to flatten the data by focusing on the things
that are different between cells.

A PCA example

Here is a 2-D plot of the data from 2 cells

Again, we'll start with just two cells
Here's the data:

Gene Celll reads Cell2 reads
i -
a 10 ! 8 -
. : }
: ° i 2 - - -
c 14 ] 10 Cell 2 ® @
4 33 i 45 Read Counts - @ -
. ' ,
e 50 H 42 °
'f 80 ! 72 | -
' : v
g 95 ' 90
h a4 ' 50
| . '
: 60 : 50 Cell 1
... (etc) .. (ete) i .. (ete) Read Counts




Reproducibility - PCA

Generally speaking, the dots are spread out along a
diagonal line.

Cell 2
Read Counts

Cell 1
Read Counts



Reproducibility - PCA

Generally speaking, the dots are spread out along a
diagonal line.

Another way to think about this is that the
maximum variation in the data is between the two
endpoints of this line. -

Cell 2
Read Counts

Cell 1
Read Counts



Reproducibility - PCA

Generally speaking, the dots are also spread out a
little above and below the first line.

Another way to think about this is that the 2™
largest amount of variation is at the endpoints of
the new line. ~

Cell 2
Read Counts

Cell 1
Read Counts



If we rotate the whole graph, the two lines that we
drew make new X and Y axes.




Re o roducibil |ty - PCAlf we rotate the whole graph, the two lines that we
drew make new X and Y axes.

This makes the left/right, above/below variation
easier to see.

1) The data varies a lot left and right

2) The data varies a little up and down ?

Note: All of the points can be drawn in terms of left/right + up/down, just
like any other 2-D graph.

That is to say, we do not need another line to describe “diagonal”
variation - we've already captured the two directions that can have
vanation.



Reproducibility - PCA

These two “new” axes that describe the variation in
the data are “Principal Components” (PCs)

PC1 (the first principal component) is the axis that
\ spans the most variation.

PC1




Reproducibility - PCA

These two “new” axes that describe the variation in
the data are “Principal Components” (PCs)

PC1 (the first principal component) is the axis that
spans the most variation.

PC2 is the axis that spans the second most variation.

PC1




Reproducibility - PCA _
General ideas so far...

* For each gene, we plotted a point based on how many reads were
from each cell.

Ol 2
Reao
Countsl

Coll 1 Read Counns

* PC1 captures the direction where most of the variation is.
* PC2 captures the direction with the 2" most variation.



Reproducibility - PCA .
What if we had 3 cells?

® _prc1

Cell 2
Read Counts

Cell 3
Read Counts

PC3

Coll 1 Read Coumns

Just like before, PC1 would span the direction of the most variation.
PC2 would span the direction of the 2™ most variation.
However, since we have another direction we can have variation, we need another PC,

PC3 spans the direction of the 3" most variation.



Reproducibility - PCA
What if we had 4 cells?

* PC1 would span the direction of the most variation.
* PC2 would span the direction of the 2"¢ most variation.
* PC3 would span the direction of the 3@ most variation.
* PC4 would span the direction of the 4" most variation.

There is a principal component for each dimension (cell).
If we had 200 cells, we would have 200 principal components.

PC200 would span the direction of the 200™ most variation.



Reproducibility - PCA

KS62 » NPC
C s

| ® HLEO o GWIB
® 2339 « GW21
« GW2143
® Kera @ hPSC
x B
» 2338
NETRET T
"O ol » e
. . o
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expression. 100 50 o 100 150 200 250

PC1 - the direction of the most variation in gene
expression.



