

Identification of gene elements

Why is important to identify TSS, ATG,

exons and introns for one specific gene?

Manipulation of genomic regions

Where is my gene of interest? Gene context could have a role in the gene regulation

Location: 6q25.1-q25.2

See ESR1 in Genome Data Viewer

Exon count: 23

Annotation release	Status	Assembly	Chr	Location
<u>109</u>	current	GRCh38.p12 (GCF 000001405.38)	6	NC_000006.12 (151654148152129604)
<u>105</u>	previous assembly	GRCh37.p13 (GCF 000001405.25)	6	NC_000006.11 (152011631152424409)

All trascript annotated to this locus What is the transcript that is target of my research?

GENOMIC REGULATORY REGION ELEMENTS

Nature Reviews | Genetics

ACTIVE ENHANCER

essentially buried in compact chromatin and is devoid of transcription factor binding and histone modifications.

Single Cell Analysis description

cDNA sequencing library preparation (insert 'index' nucleotide barcodes to identify each library)

Pool cDNA sequencing libraries

۲

 ${}^{\textcircled{}}$

(8)

۲

Sequence libraries (via Next Generation Sequencing)

Use bioinformatic methods to perform quality control and to assess technical variability in the scRNA-seq data.

Use bioinformatic and/or computational methods to interpret robust data biologically

Single cell analysis to identify what genes are expressed in cell types

Query bulk expression

Sack to Expression Atlas

Single Cell Expression Atlas

Single cell gene expression across species

Home Q Gene search A Browse experiments Release notes Q Help

Single-cell transcriptome analysis of precursors of human CD4+ cytotoxic T lymphocytes

Feedback

Single-cell RNA-Seq mRNA baseline

Number of cells: 1.411 Organism: *Homo sapiens* Publication:

• Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P et al. (2018) Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis.

		10-5
11:00	Alter	

Gene expression analysis in single cells across species and biological conditions

Single Cell Expression Atlas supports research in single cell transcriptomics. The Atlas annotates publicly available single cell RNA-Seq experiments with ontology identifiers and re-analyses them using standardised pipelines available through iRAP, our RNA-Seq analysis toolkit. The browser enables visualisation of clusters of cells, their annotations and supports searches for gene expression within and across studies.

Search		
Gene ID or gene symbol	Species Any	•

Examples: CFTR (gene symbol), ENSG00000115904 (Ensembl ID), 657 (Entrez ID), MGI:98354 (MGI ID), FBgn0004647 (FlyBase ID)

Search

Your favourite gene expression in Single Cell-Seq datasets

Single-cell transcriptome analysis of precursors of human CD4+ cytotoxic T lymphocytes

 Single-cell RNA-Seq mRNA baseline

 Number of cells: 1.411

 Organism: Homo sepiens

 Publication:

 • Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P et al. (2018) Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis.

Cluster of cell types in Single Cell-Seq dataset

ESR1 expression in Single Cell-Seq dataset

FIVE MOST-COMMON BREAST CANCER SUBTYPES

	Breast Cancer Distant Metastases					
	Bone	Liver	Brain	Lung	Distant Lymph-node	
	Sard	5			A CONTRACT OF THE OWNER OWNE OWNER OF THE OWNER OWNE	
Associated subtypes	Luminal-HER2	HER2-enriched ER-positive Luminal B Luminal-HER2	HER2-enriched Luminal-HER2 TN-nonbasal Basal-like	TN-nonbasal Basal-like Luminal B HER2+, HR-, p53-	Luminal type HER2-enriched	
Molecular features	Growth factors: IGF1, PGE2, TGFβ, PDGF and FGF2 Interleukins: IL-11, IL- 1, IL-6 PTHrP OPN Heparanase RANKL-RANK pathway Src-dependent pathway	Chemokines and receptors: CXCR4/CXCL12 Interleukins: IL-6 Integrin complexes: α2β1, α5β1 N-cadherin HIF-regulated genes: LOX, OPN, VEGF, TWIST β-catenin- independent WNT signaling Downregulation of ECM (stromal) genes	ST6GALNAC5 CSC markers: Nestin, CD133, and CD44 Growth factors: VEGF and HBEGF Chemokines and receptors: CXCR4 Cytokines: CK5 MMP-1 and MMP-9 IL-8 Ang-2 COX2 L1CAM	Growth factors and their receptors: TGFβ, EGFR, EREG, VEGF Matrix metalloproteinases: MMP-1 and MMP-2 COX2 LOX BMP inhibitors: GALNTs and Coco	Kallikreins: KLK10, KLK11, KLK12, and KLK13 Downregulation of BCR signal pathway	

Homo sapiens	 See cluster 1 for k = 5 <u>4</u> <u>See cluster 2 for k = 7</u> 	Single cell RNA-seq of primary breast cancer cells and lymph node metastases from 11 patients representing the four subtypes of breast cancer: luminal A, luminal B, HER2 and triple negative breast cancer	h singl • sa	le cell identifier histology ampling site	540
--------------	---	--	-----------------	---	-----

ESR1 expression in specific cell subtypes in Single Cell-Seq dataset

0.1 0.2 0.4 1 2 4 10 20 40 100 200 400 1k 2k 4k 10k

RNA-Seq analysis reveals that mHTT N terminus expression triggers pro-inflammatory gene expression in BV2 microglia

Heat map: Gene modulated in different conditions

UCSC browser for specific gene locus

Gene ontology

The Gene Ontology project provides controlled vocabularies of defined terms representing gene product properties.

These cover three domains:

Cellular Component: the parts of a cell or its extracellular environment;

Molecular Function, the elemental activities of a gene product at the molecular level, such as binding or catalysis

Biological Process, operations or sets of molecular events with a defined beginning and end, pertinent to the functioning of integrated living units: cells, tissues, organs, and organisms.

In an example of GO annotation,

the gene product **"Cytochrome c" Molecular Function** term "oxidoreductase activity"

Biological Process terms "oxidative phosphorylation" and "induction of cell death"

Cellular Component terms "mitochondrial matrix" and "mitochondrial inner membrane".

