MASTER IN CELLULAR AND MOLECULAR BIOLOGY Developmental Neurobiology Cortical Development

I. Cellular and Molecular Organization of the Developing Cerebral Cortex

1st of April:

14:00-16:00 – Personal Introduction + Lecture and questions

2nd of April:

11:00-13:00 → Lecture and questions (Room 1)

14:00-16:00 → How to write a scientific paper (Room 5)

MASTER IN CELLULAR AND MOLECULAR BIOLOGY Developmental Neurobiology Cortical Development

II. Neural Circuit Development in Health and Disease

15th of April: 14:00-16:00 – **Lecture and questions**

16th of April: 20 students/4 \rightarrow 5 groups

11:00-13:00 → **Studer**: **How to write a** <u>fellowship proposal</u> (Title; Background and Rationale; Research Question(s); Research Methodology; Plan of Work & Time Schedule; Bibliography)

14:00-16:00 → **Students**: **Presentation of** <u>5 emerging technologies</u> in neurobiology/neuroscience: (i) 3D whole brain imaging; (ii) optogenetics & functional whole brain imaging; (iii) scRNAseq & cell lineage tracking; (iv) IPSCS & brain organoids; (v) in vivo & in vitro reprogramming.

MASTER IN CELLULAR AND MOLECULAR BIOLOGY Developmental Neurobiology Cortical Development

III. Genetics of Brain Disorders

29th of April: 14:00-16:00 – **Studer & students**: Discussion on fellowship proposals

30th of April: 20 students/4 \rightarrow 5 groups

11:00-13:00 → *Lecture and questions*

14:00-16:00 \rightarrow Students: Presentation of the fellowship proposal to the others

Scientific cursus

Michèle Catherine STUDER married MENEGHELLO 1 child born in 2003

POSITION: Research Director Inserm since 2009 at the Institute of Biology Valrose, iBV University de Nice Sophia-Antipolis (UNS) Nice, France

Group Leader of the "Development and Function of Brain Circuits Lab";

EDUCATION: 1987: "Laurea 110/110 cum laude" in Biological Sciences at the University of Pisa, Pisa, Italy.

Work on "Population cytogenetics of Albanians in the province of Cosenza: frequency of Q and C band variants."

1990: PhD in Molecular Biology

at the "Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy". Work on "Transcriptional regulation of the mouse liver/bone/kidney-type alkaline phosphatase gene in vitro."

- 1989: Visiting Research Fellow at Fidia S.P.A. 'Research Laboratories', Abano, Italy
- 1990: Visiting Research Fellow at Research Institute of Molecular Pathology (IMP), Vienna, Austria

Scientific cursus

1991-1997: POST-DOC Research Fellow at: Division of Developmental Neurobiology, MRC/National Institute for Medical Research, London, UK. *Head of Laboratory:* Robb Krumlauf

Work on: "In vivo genetic interactions and functional characterization of the mouse homeotic gene Hoxb1 in the developing hindbrain".

1994: Visiting Research Fellow at Baylor College of Medicine, Houston, USA; Head of Laboratory: Alan Bradley

1997-2001: MRC Research Group Leader/ Junior Lecturer MRC Centre for Developmental Neurobiology, King's College, Guy's Campus, London, UK. Centre Director: Andrew Lumsden

Work on: "Role of retinoic acid signaling during forebrain patterning".

2000: Visiting Research Fellow at UCSF, San Francisco, USA Head of Laboratory: John Rubenstein

Scientific cursus

2001-2009: Full Investigator and Responsible of the Transgenic and Knock-out Core Facility at TIGEM (Telethon Institute of Genetics and Medicine), Napoli, Italy. Institute Director: Andrea Ballabio

Work on: "Functional and genetic characterization of area patterning genes during cortical development ".

Since 2009: *Directeur de Recherche (DR2-DR1) Inserm;* University of Nice Sophia-Antipolis, Valrose Campus, Nice, France.

Work on: "Molecular and cellular mechanisms during assembly of brain circuits". http://ibv.unice.fr/research-team/studer/

Cellular and Molecular Organization of the Cortex

Michèle Studer iBV, Nice, France

Torino 01/04/2019

Neural Regionalization

Antero-Posterior (AP) and Dorso-Ventral (DV) regionalization of the forebrain

Cortical Projection neurons and Interneurons are born from different D/V regions of the telencephalon

Sulci and gyri of the neocortex

Mouse

Monkey

Human

Mouse

Monkey

BRAIN SIZE AND NEURON COUNT

Cerebral cortex mass and neuron count for various mammals.

5 cm	Re	R		
Capybara	Rhesus Macaque	Western Gorilla	Human	African Bush Elephant
non-primate	primate	primate	primate	non-primate
48.2 g	69.8 g	377 g	1232 g	2848 g
0.3 billion neurons	1.71 billion neurons	9.1 billion neurons	16.3 billion neurons	5.59 billion neurons

Morphological heterogeneity of cortical neurons

How can a relatively simple pseudostratified neuroepithelium transform into a complex structure organized into layers?

Mammalian corticogenesis

modified from Kwan et al., 2012

First stage: proliferation via symmetric division

Second stage: proliferation via asymmtric division

Differences in cell division planes during lateral versus radial expansion

Symmetric: increase in number of radial columns + surface expansion of the cerebral cortex

Radial expansion

Asymmetric: increase in number of neurons within radial columns without a change in the cortical surface area (radial)

SVZ

Virginia Fernández et al. EMBO J. 2016

Sulci and gyri in primates

Florio & Huttner, Development, 2014

Different types of progenitors in VZ and SVZ

Apical ventricular surface

Namba & Huttner, 2016

Mouse vs human progenitor expansion

Molecular characterization of the different cell types

Lui et al., Cell, 2011

The human cortex generates more basal radial glia (OSVZ)

(Hansen et al., Nature, 2010)

Morphological transition of the radial glia

Nowakowski et al., 2016

The ferret: an ideal animal for studying mechanisms leading to cerebral cortical gyrencephaly

Looking for genes involved in cortical folding in the ferret

De Juan Romero et al., 2015

Differential gene expression between splenial gyrus (SG) and lateral sulcus (LS) along germinal layers

Expression of Trnp1 in Ferret and Mouse

Mouse

Different expression levels between OSVZ and VZ/SVZ

Similar expression levels between SVZ et VZ

Stahl et al., 2013

Overexpression of Trnp1 in vivo Increases the Number of Apical Progenitors and Promotes Lateral Expansion

Knockdown of Trnp1 In Vivo Increases the Number of Basal Progenitors and Promotes Radial Expansion

Stahl et al., 2013 Martinez et al., 2016

Molecular regulation of stem cells in the developing cerebral cortex of gyrencephalic brains

Virginia Fernández et al. EMBO J. 2016

An oRG population in the mouse

Vaid et al., 2018

Gene expression changes affecting neural progenitor cells

Florio et al., Science 2015

Evolution of the Rho-GTPase gene ARHGAP11B

Delamination of neural progenitors via adherens junction proteins

Tavano et al., 2018

The marmoset, a non-human primate recently used in neurosciences

COL25A1

Sub

RORA

"Learning from and for development":

using the knowledge from basic developing mechanisms to generate mini-brains in vitro

Culturing cerebral organoids in 3D

Lancaster M. et al., Nature, 2013

Major structural organization and regional differentiation are recapitulated in cerebral organoids

From Dias & Guillemot, EMBO J. 2017

Challenges in organoid production

Quadrato & Arlotta, 2017

Generation, characterization and analysis of 3D cellular models of the human brain from induced pluripotent stem cells (iPSCs)

Quadrato et al., Nat Med, 2016

Cerebral organoids as models of neuropsychiatric diseases

Quadrato et al., Nat Med, 2016

Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia

Johannes Klaus^{1,11}, Sabina Kanton^{2,11}, Christina Kyrousi^{1,11}, Ane Cristina Ayo-Martin^{1,3}, Rossella Di Giaimo^{1,4}, Stephan Riesenberg², Adam C. O'Neill^{5,6}, J. Gray Camp², Chiara Tocco ¹, Malgorzata Santel², Ejona Rusha⁷, Micha Drukker⁷, Mariana Schroeder¹, Magdalena Götz^{6,8}, Stephen P. Robertson ⁵, Barbara Treutlein ^{2,9,10*} and Silvia Cappello ^{1*} Mutations in the cadherin receptor-ligands pair DCHS1 and FAT4 cause neuronal heterotopia and abnormal morphology of NPC in cerebral organoids

Klaus et al., 2019