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@ Why do we map reads?
@ How can we map reads?

© Can we deal with the computational challenge?
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Part 1

Why do we map reads?
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Sequencing Costs are decreasing exponentially

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts
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Sequencing throughput of some current platforms

o -

iSeq 100 System MiniSeq System MiSeq Series © NextSeq Series @

Popular Applications & Methods Key Appication Key Acpication Key Apication Key Agplcation

Large Whole-Genome Ssquencing (human, plant

animal) L

Small Whole-Genome Ssquencing (microbe, virus) ° ° ®

Exome Sequencing ®

Targeted Gene Sequencing {amplcon, gene panel) ® Y Y

Whole-Transcriptome Sequencing ®

Gene Expression Profiling with mRNA-Seq ®

Targeted Gene Expression Profiling ® °

Lang-Range Amplicon Sequencing” ® ™Y

miRNA & Smal RNA Analysis ® Y Y

DNA-Protein Interaction Analysis ®

Methy lation Sequencing ®

165 Metagenomic Sequencing ° [
Run Time 9-175hrs 4-24 hours 4-55 hours 12-30 hours
Maximum Quiput 1.2Gb 75Gb 15Gb 120 Gb
Maximum Reads Per Run 4 millon 25 millon, 25 millon t 400 millon
Maximum Read Length 2% 150bp 2% 150 bp 2 300bp 2% 150 bp
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From Species to Personal Genomes

o Comparison among species:

@ Studying single personal genome:
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From Species to Personal Genomes
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From Species to Personal Genomes

@ Nicholas Volcker: first person to have life saved by genome sequencing
(2010);

@ His intestine had been dangerously inflamed, necessitating a hundred
surgeries including the removal of his colon;

@ Personal genomics can help us to understand the genetic basis of diseases.
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Genomes Meet the Crowd
@ Personal Genome Project UK (2013): 100,000 human genomes;

o Ethical issues?
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How can we map reads?
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Why Not Use Assembly?

@ Assembly algorithms (e.g. de Bruijn graph) are too computational expensive;

Genome
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ATGTTCCGATTAL L AN WACTOTTTCATTCAGTAAAAGGAGGAAATATAA

o Idea: use existing structure of reference genome to help us to sequence a
patient's genome.
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Toward a Computational Problem

o Reference genome: database genome used for comparison;

@ Question: How can we assemble individual genomes efficiently using a
reference?

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT  Individual

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference
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Read Mapping

@ Read mapping: determine where each read has high similarity to the
reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference
GAGGA CCACG TGA-A Reads

@ local alignment or pattern matching algorithms can be exploited.
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Can we deal with the computational challenge?
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Can we use local alignment algorithm?

@ Recent implementations can calculate 3 billion of node score per second;

@ Human genome ~ 3 billion * Read length ~ 250 *x Read Number ~ 100
million — ~ 150 * 100 million of seconds;

@ How to deal with this:

> Parallel computing;
> Filtering phase before local alignment algorithm;

» Quasi alignment approaches.
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Read alignment process

@ The read alignment process can be decomposed into three steps:
> to identify the potential areas of similarity between reads and genome using
k-mer and hashing (i.e. we look for exact substring matches);

> to validate the similarity between read and each potential area exploiting local
alignment;

> to evaluate the alignments with similar score in different positions.
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Introduction to k-mers

o Definition: Given a string S then a k-mer is a substring of S with length k.
ATGCTGCTGATCGTCATGCTGCGCTAGCTAGCTAGCT

k=7

@ k-mer generation: All the k-mers of a strings can be generated using a
sliding window approach.

P ATGCTGCTGATCGTCATGCTGCGCTAGCTAGCTAGCT

‘l #k-mer = Read length - k +1 (WORST CASE) —_— j
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Read alignment process

@ Observe that a mismatch will affect k k-mers. For instance assuming k=26
we will have:

TCGCGAAATTGTAGTATAACGATAAGTAAATATCGAGAATGCAGCGGTGAATTTGCTTTGTGTGCAAACGGT

kmerl
k-mer2
k-mer3
kmerd

26 k-mers

k-mer24
k-mer2s
k-mer26
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Introduction to k-mers

@ Associating information with k-mers.

ATGCTGCTGATCGTCATGCTGCGCTAGCTAGCTAGCT

Different information can be associated with k-mers as:

k-mer Frequency k-mer Position(s)
ATGCTGC Z ATGCTGC 1,18
TGCTECT 1 TGCTGCT |3
GCTGCTG 1 GCTGCTG B
TAGCTAG 1 TAGCTAG 28
AGCTAGC 1 AGCTAGC 23
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Associative array

How to efficiently store k-mers and their information: Associative array is
abstract data type composed of a collection of (key, value) pairs, such that each
possible key appears just once in the collection.

Informally, an associative array is an array having an index that is not necessarily
an integer, and can be sparsely populated.

Key Value

k-mer Frequency -
ety |MoCToc
GCTGCTG L AGCTAGC .
rseee T S A .l
TGCTGCT .]

Associative array
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Hash table in a nutshell

An associative array can be efficiently implemented using hash table. Hash table
is a good compromise in terms of memory and search cost. It requires:

@ hash function: is a function used to map data of arbitrary size to a index.

Example (A trivial hash function)

A trivial hash function is (fo:l f(m[i])modn where ml[i] returns the nucleotide in position i in
m, and f is a function mapping a integer value to a nucleotide type.

@ collision policy: two or more k-mers can have the same hash value. Collision can be solved
using a chaining: all elements with same hash value are stored in linked list.

ATGCTGC 2

Collision list
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Hash table in a nutshell

To search a k-mer requires:
@ to identify the right collision list computing the hash value for such k-mer;
@ to scan the collision list.
It is important to select a hash function which provides uniform distribution of hash values.

To insert a k-mer requires:
@ to search the k-mer;
> if it is in the hash table then only its information are updated;
> otherwise the k-mer is inserted into the right collision list.

ATGCTGC 2

Collision list
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How to deal with multiple mismatches

ATCAGCGCAAATGCTCAAGA
ATCAGC
TCAGCG
CAGCGC
AGCGCA
GCGCAA
CGCAAA
GCAAAT
CAAATG
AAATGC
AATGCT

ATGCIC
TGCICA
GCTCAA
CICAAG
TCAAGA

@ In this case, assuming k = 6 and orange bases mutated then no exact
matches are found;

@ How to cope with this?
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Multiple mismatches and space seed
@ space seed can be used;

@ The idea is to used a special mask to generate k-mer;

111 x1%11

ATCAGCGCAAATGCICAAGA
ATC G GC
TCA C CA
CAG G AA
AGC C AA
GCG A AT
CGC A TG
GCA A GC
CAA T CT
AAA G IC
AAT C CA
ATG T AA
TGC C AG
GCT A GA
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Multiple mismatches and space seed

o Different spaced seed can be used to detect different homologies;
@ Some spaced seeds can detect more homologies than others;

@ A set of spaced seeds can be simultaneously used to hit more homologies.
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