BIOINFORMATICS How do we compare biological sequences?

Marco Beccuti

Università degli Studi di Torino Dipartimento di Informatica

April 2019

Outline

- Introduction to Sequence Alignment
- e Hamming distance for similarity between sequences
- Alignment Game and the Longest Common Subsequence;
- The Manhattan Tourist Problem;
- The Change Problem;
- Oynamic programming and backtracking pointers;
- From Manhattan to Alignment Graph;
- From Global to Local Alignment;
- Penalizing Insertions and Deletions in Sequence Alignment;
- Space-Efficient Sequence Alignment;
- Multiple Sequence Alignment.

Chapter 5 in Bioinformatics Algorithms: An active Learning Approach (Vol.1).

Global Alignment

Definition: to find highest-scoring alignment between two strings by using a scoring matrix

Input: two strings v and w, and matrix score

Output: An alignment with the maximal score among all possible alignments

 Global alignment is a right solution for some biological contexts, but it is wrong for some others.

Homeobox Genes

- Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions
- This short conserved region is called *homeodomain* that is highly conserved among species;
- A global alignment could not find the homeodomain because it tries to aligns the entire sequence.

Which Alignment is Better?

score = 22 (matches) - 20 (indels)=2 GCC-C-AGT-TATGT-CAGGGGGGCACG-A-GCATGCAGA-GCCGCC-GTCGT-T-TTCAG---CA-GTTATG--T-CAGAT score = 17 (matches) - 30 (indels)=-13 ---G----C---C-CAGTTATGTCAGGGGGGCACGAGCATGCAGA GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A-----T-----

Which Alignment is Better?

Local alignment = Global alignment in a sub-rectangle

Local alignment = Global alignment in a sub-rectangle

• it is too expensive \Rightarrow the number of possible sub-rectangles is too large.

Local Alignment

Definition: highest-scoring local alignment between two strings by using a scoring matrix

Input: two strings v and w, and matrix score

Output: Substrings of v and w whose global alignment is maximal among all the global alignments of all substrings of v and w

What do Free Taxi Rides mean in the alignment graph?

What do Free Taxi Rides mean in the alignment graph?

What do Free Taxi Rides mean in the alignment graph?

Dynamic Programming for local alignment

$$s_{i,j} = \max \begin{cases} & \text{weight of edge } (0,0) \text{ into } (i,j) \\ s_{i-1,j} + \text{weight of edge } ``\downarrow`` \text{ into } (i,j) \\ s_{i,j-1} + \text{weight of edge } ``\to`` \text{ into } (i,j) \\ s_{i-1,j-1} + \text{weight of edge } ``\downarrow`` \text{ into } (i,j) \end{cases}$$

Dynamic Programming for local alignment

$$s_{i,j} = \max \left\{ \right.$$

 $\begin{cases} 0\\ s_{i-1,j} + weight of edge "\downarrow" into (i,j)\\ s_{i,j-1} + weight of edge "\rightarrow" into (i,j)\\ s_{i-1,j-1} + weight of edge "\searrow" into (i,j) \end{cases}$

• This is enough for Free Taxi Rides at the beginning

Dynamic Programming for local alignment

- For Free Taxi Rides at the end, we have to allow to start backtracking from any nodes;
- The optimal local alignment is the one that ends with the node with maximum score.

Backtracking

Starting at the element with the highest score, trace-back based on the source of each score recursively, until 0 is encountered.

Exercises

Try to align globally/locally the following sequences:

- ACCTG and TGATG;
- ACTCA and CACTC.

score matrix =
$$\begin{bmatrix} 1 & -2 & -2 & -2 & -1 \\ -2 & 1 & -2 & -2 & -1 \\ -2 & -2 & 1 & -2 & -1 \\ -2 & -2 & -2 & 1 & -1 \\ -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

Naive Scoring for indels

- We previously defined a fixed penalty σ to each indel;
- This could be too severe for a series of 100 consecutive indels;
- A series of k indels represents a single evolutionary event (gap) rather than k events;

two gaps	GATCCAG	GATCCAG	a single gap
(assign lower score)	GA-C-AG	GACAG	(assign higher score)

A more complex scoring for indels

• Refine gap penalty for a gap of length k;

 $\sigma + \epsilon (k-1)$

where:

- σ the penalty for opening a gap;
- ϵ the penalty for extending a gap;
- $\sigma > \epsilon$ because starting a gap should be penalized more than extending it.

two gaps	GATCCAG	GATCCAG	a single gap
(assign lower score)	GA-C-AG	GACAG	(assign higher score)

How to use this new score function in Manhattan

How to use this new score function in Manhattan

- We have to add O(n³) edges to the graph assuming n and m the lengths of the two sequences and n ≥ m;
- The running time is O(||edges||)

- We have to add O(n³) edges to the graph assuming n and m the lengths of the two sequences and n ≥ m;
- Thus running time become $O(||n^3||) \leftarrow$ **Too expensive**

Penalizing Insertions and Deletions in Sequence Alignment **Big-O notation**

• it is a relative representation of the complexity of an algorithm:

a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value.

- it can be exploited to answer the following questions:
 - ▶ if it takes me one second to align 10,000 elements how long will it take me to align one million?
 - if two algorithms exist to solve a problem what is the best one?

100

700

10000

2^100

100!

Penalizing Insertions and Deletions in Sequence Alignment Building Manhattan on 3 levels

bottom level (insertions) upper level deletions) middle level (matches/mismatches)

Building Manhattan on 3 levels

How can we emulate this path in the 3-level Manhattan?

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

• • • • •

Building Manhattan on 3 levels

Building Manhattan on 3 levels

Penalizing Insertions and Deletions in Sequence Alignment Building Manhattan on 3 levels

Building Manhattan on 3 levels

Penalizing Insertions and Deletions in Sequence Alignment Building Manhattan on 3 levels

• Degree of each node is small $\rightarrow O(n^2)$ edges;

• The running time is $O(||n^2||)$.

M. Beccuti