BIOINFORMATICS
How do we compare biological sequences?

Marco Beccuti

Universita degli Studi di Torino

Dipartimento di Informatica

March 2019

Outline

o
o

(]

(5

@ Dynamic programming and backtracking pointers;

@ From Manhattan to Alignment Graph;

@ From Global to Local Alignment;

@ Penalizing Insertions and Deletions in Sequence Alignment;
@ Space-Efficient Sequence Alignment;

@ Multiple Sequence Alignment.

Chapter 5 in Bioinformatics Algorithms: An active Learning Approach (Vol.1).

M. Beccuti BIOINFORMATICS March 2019 2/42

Part 2

Dynamic Programming and Backtracking Pointers

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ We come back to Longest Path Problem in a grid;

There are only 2
ways to arrive to
the sink:

by moving

or by moving

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ We come back to Longest Path Problem in a grid;

There are only 2
ways to arrive to
the sink:

by moving

or by moving

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ We come back to Longest Path Problem in a grid;

South or East?

SouthOrEast(i,j):
the length of the longest path from
(0,0) to (i,j)

5
[B B B N
SouthOrEast(n,m)=
X { SouthOrEast(n-1,m)+weight of edge “ ”into (n,m)
SouthOrEast(n,m-1)+ weight of edge “ ”into (n,m)

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ A recursive algorithm can easily define to compute the Longest Path Problem
in a grid;

SouthOrEast(i)
If i=0 and j=0
return O
x= - infinity, y=-infinity
If i>0
x € SouthOrEast(i-1,j) + weight of the vertical edge into (1,j)
If >0
y € SouthOrEast(/,j-1) + weight of the horizontal edge into (1,j)
return max{x,y}

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ A recursive algorithm can easily define to compute the Longest Path Problem
in a grid,

SouthOrEast(i,j)
If i=0 and j=0
return O
x= - infinity, y=-infinity
If i>0

x € SouthOrEast(i-1,j) + weight of the vertical edge into (/,j)
If j>0

y € SouthOrEast(/,j-1) + weight of the horizontal edge into (1)
return max{x,y}

@ |t visits all the possible paths: it is correct. but it is too expensive!!

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

OFn Zn Bn B
1 0 2 4 3

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

We arrived
to (1,1)

by the bold
edge:

¥

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

We arrived
to (2,1)

by the bold
edge:

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ We can have cases in which both choices provide a similar results;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

@ Now, we can define the Dynamic Programming Recurrence as follows:

e —max] S1J + weight of edge “|" into (i)
N sij—1 + weight of edge "—" into (i,)

where s; ; is the length of the longest path from (0, 0) to (/,;).

M. Beccuti BIOINFORMATICS March 2019 22 /42

Dynamic Programming and Backtracking Pointers

@ Backtracking pointer can be defined as:

the best way to get to each node

Backtracking
pointers:

the best way
to get to each

node

@ the value in the sink node is the value of the longest path.

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?

M. Beccuti BIOINFORMATICS

Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?

What is the
optimal path
from source
to sink?

M. Beccuti BIOINFORMATICS

Part 2
From Manhattan to Alignment Graph

M. Beccuti BIOINFORMATICS

From Manhattan to Alignment Graph

o Extending the approach for DAGs;

OW doe e 0
o o o Inge
O grap
E:Li...': o
[l o 6
Pl = -
= ol g * 0
e e et
SR sl
e =: ot
e
) W o et~ Sl
‘f;m:. T TN
O

M. Beccuti BIOINFORMATICS

From Manhattan to Alignment Graph

o Extending the approach for DAGs;

@ all the highlighted nodes can be reached in only one-way.

M. Beccuti BIOINFORMATICS

From Manhattan to Alignment Graph

o Extending the approach for DAGs;

S =max
a

s+ weight of edge from b to a}

all predecessors b of node

4 choices:
5+
3+
5+
4 +

M. Beccuti BIOINFORMATICS

From Manhattan to Alignment Graph
o Extending the approach for DAGs;

S = Mmax
a

{s,+ weight of edge from b to a}

all predecessors b of node a

M. Beccuti BIOINFORMATICS

From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Alignment Graph

sij—1 + weight of edge "—" into (i,})

si—1,j + weight of edge “|" into (i,j)
S;,j = maX
si—1,j—1 + weight of edge “\," into (i,)

where s; ; is the length of the longest path from (0,0) to (i,J).

4
(@]
@
(@]
(@]

red edges - weight
all other edges — weight 0

|
|
l
|
|
l
1
!

M. Beccuti BIOINFORMATICS

March 2019

31/42

From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Longest Subsequence Problem

si—1;+0

sij—1+0
si_1j—1+0 iff Vi #W,
sicij-1+1 iff Vi=W,

S j = maXx

where s; ; is the length of the longest path from (0, 0) to (/).

-
(@]
[®)
O
O

red edges — weight
all other edges — weight 0

l
|
l
l
|
1
1
|

M. Beccuti BIOINFORMATICS March 2019 32/42

From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Longest Subsequence Problem

backtracking pointers
for the Longest
Common Subsequence

M. Beccuti BIOINFORMATICS

From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Longest Subsequence Problem

backtracking pointers
for the Longest
Common Subsequence

@ Blue arrows show the set of optimal alignments

M. Beccuti BIOINFORMATICS

Part 2

Penalizing Insertions and Deletions

in
Sequence Alignment

M. Beccuti BIOINFORMATICS

Penalizing Insertions and Deletions in Sequence Alignment

@ it is not difficult to construct an alignment having a lot of matches at the
expense of introducing more indels, ...

@ but more indels we add, then less biologically relevant the alignment becomes;

How can we cope with this point?

M. Beccuti BIOINFORMATICS March 2019 36 /42

Penalizing Insertions and Deletions in Sequence Alignment

How can we cope with this point?

@ we can extend our score function

||[matches||

into
|[matches|| — w||mismatches|| — o|indels||

so that we take into account penalties associated with mismatches and indels

M. Beccuti BIOINFORMATICS March 2019 37/42

Penalizing Insertions and Deletions in Sequence Alignment

@ we can define a scoring matrix as follows:

scoring matrix scoring matrix with arbitrary values

M. Beccuti BIOINFORMATICS

Penalizing Insertions and Deletions in Sequence Alignment
@ a strong effort was spent to define the most appropriate scores;

@ for instance

Scoring Matrices for Amino Acid Sequences

Y often mutates into
but rarely mutates into

M. Beccuti BIOINFORMATICS

Penalizing Insertions and Deletions in Sequence Alignment

@ How to change the dynamic programming recurrence:

Si1,j +weightofedge” ”into (i)

S, = max ST weight of edge “ " into (i,j)

Sj.1, j-1+ weight of edge “N" into (i)

%
%

PP PP P PP

M. Beccuti BIOINFORMATICS

Penalizing Insertions and Deletions in Sequence Alignment

@ How to change the dynamic programming recurrence:

M

Beccuti

—

(match)
(mismatch)

4
1>
=
7]
&

L7}
77}

le.
%

—T_—
7 la
= =
T
=
oy

T
=y N
-0
S0 B
I.q "
-0
T
l_a +1
-0
|20
I.U “
-0
O R
o N\H
=0
Ok N

L}
=

[

LT -

IAl
Q Q Q Q

I
|

V%
=
14 /7
<

BIOINFORMATICS

Penalizing Insertions and Deletions in Sequence Alignment

@ How to change the dynamic programming recurrence in general way:

M. Beccuti BIOINFORMATICS

