BIOINFORMATICS
How do we compare biological sequences?

Marco Beccuti

Universita degli Studi di Torino

Dipartimento di Informatica

March 2019




Outline

o
o

(]

(5

@ Dynamic programming and backtracking pointers;

@ From Manhattan to Alignment Graph;

@ From Global to Local Alignment;

@ Penalizing Insertions and Deletions in Sequence Alignment;
@ Space-Efficient Sequence Alignment;

@ Multiple Sequence Alignment.

Chapter 5 in Bioinformatics Algorithms: An active Learning Approach (Vol.1).
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Part 2

Dynamic Programming and Backtracking Pointers
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Dynamic Programming and Backtracking Pointers

@ We come back to Longest Path Problem in a grid;

There are only 2
ways to arrive to
the sink:

by moving

or by moving
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@ We come back to Longest Path Problem in a grid;

There are only 2
ways to arrive to
the sink:

by moving
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Dynamic Programming and Backtracking Pointers

@ We come back to Longest Path Problem in a grid;

South or East?

SouthOrEast(i,j):
the length of the longest path from
(0,0) to (i,j)

5
[ B B B N
SouthOrEast(n,m)=
X { SouthOrEast(n-1,m)+weight of edge “ ”into (n,m)
SouthOrEast(n,m-1)+ weight of edge “ ”into (n,m)
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Dynamic Programming and Backtracking Pointers

@ A recursive algorithm can easily define to compute the Longest Path Problem
in a grid;

SouthOrEast(i )
If i=0 and j=0
return O
x= - infinity, y=-infinity
If i>0
x € SouthOrEast(i-1,j) + weight of the vertical edge into (1,j)
If >0
y € SouthOrEast(/,j-1) + weight of the horizontal edge into (1,j)
return max{x,y}
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Dynamic Programming and Backtracking Pointers

@ A recursive algorithm can easily define to compute the Longest Path Problem
in a grid,

SouthOrEast(i,j)
If i=0 and j=0
return O
x= - infinity, y=-infinity
If i>0

x € SouthOrEast(i-1,j) + weight of the vertical edge into (/,j)
If j>0

y € SouthOrEast(/,j-1) + weight of the horizontal edge into (1)
return max{x,y}

@ |t visits all the possible paths: it is correct. but it is too expensive!!
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

OFn Zn Bn B
1 0 2 4 3
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

We arrived
to (1,1)

by the bold
edge:

¥
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;

We arrived
to (2,1)

by the bold
edge:
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ We can have cases in which both choices provide a similar results;
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Dynamic Programming and Backtracking Pointers

@ Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

@ Now, we can define the Dynamic Programming Recurrence as follows:

e —max] S1J + weight of edge “|" into (i)
N sij—1 + weight of edge "—" into (i, )

where s; ; is the length of the longest path from (0, 0) to (/,;).
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Dynamic Programming and Backtracking Pointers

@ Backtracking pointer can be defined as:

the best way to get to each node

Backtracking
pointers:

the best way
to get to each

node

@ the value in the sink node is the value of the longest path.
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Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?
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Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?

What is the
optimal path
from source
to sink?
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Part 2
From Manhattan to Alignment Graph
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From Manhattan to Alignment Graph

o Extending the approach for DAGs;
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From Manhattan to Alignment Graph

o Extending the approach for DAGs;

@ all the highlighted nodes can be reached in only one-way.
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From Manhattan to Alignment Graph

o Extending the approach for DAGs;

S =max
a

s+ weight of edge from b to a}

all predecessors b of node

4 choices:
5+
3+
5+
4 +
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From Manhattan to Alignment Graph
o Extending the approach for DAGs;

S = Mmax
a

{s,+ weight of edge from b to a}

all predecessors b of node a
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From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Alignment Graph

sij—1 + weight of edge "—" into (i,})

si—1,j + weight of edge “|" into (i,j)
S;,j = maX
si—1,j—1 + weight of edge “\," into (i, )

where s; ; is the length of the longest path from (0,0) to (i,J).
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From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Longest Subsequence Problem

si—1;+0

sij—1+0
si_1j—1+0 iff Vi #W,
sicij-1+1 iff Vi=W,

S j = maXx

where s; ; is the length of the longest path from (0, 0) to (/).
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From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Longest Subsequence Problem

backtracking pointers
for the Longest
Common Subsequence
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From Manhattan to Alignment Graph

@ Dynamic Programming Recurrence for Longest Subsequence Problem

backtracking pointers
for the Longest
Common Subsequence

@ Blue arrows show the set of optimal alignments
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Part 2

Penalizing Insertions and Deletions

in
Sequence Alignment
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Penalizing Insertions and Deletions in Sequence Alignment

@ it is not difficult to construct an alignment having a lot of matches at the
expense of introducing more indels, ...

@ but more indels we add, then less biologically relevant the alignment becomes;

How can we cope with this point?
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Penalizing Insertions and Deletions in Sequence Alignment

How can we cope with this point?

@ we can extend our score function

||[matches||

into
|[matches|| — w||mismatches|| — o|indels||

so that we take into account penalties associated with mismatches and indels
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Penalizing Insertions and Deletions in Sequence Alignment

@ we can define a scoring matrix as follows:

scoring matrix scoring matrix with arbitrary values
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Penalizing Insertions and Deletions in Sequence Alignment
@ a strong effort was spent to define the most appropriate scores;

@ for instance ....

Scoring Matrices for Amino Acid Sequences

Y often mutates into
but rarely mutates into
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Penalizing Insertions and Deletions in Sequence Alignment

@ How to change the dynamic programming recurrence:

Si1,j +weightofedge” ”into (i)

S, = max ST weight of edge “ " into (i,j)

Sj.1, j-1+ weight of edge “N" into (i)
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Penalizing Insertions and Deletions in Sequence Alignment

@ How to change the dynamic programming recurrence:
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Penalizing Insertions and Deletions in Sequence Alignment

@ How to change the dynamic programming recurrence in general way:
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