# BIOINFORMATICS <br> How do we compare biological sequences? 

## Marco Beccuti

Università degli Studi di Torino

Dipartimento di Informatica

March 2019


## Outline

(1) Introduction to Sequence Alignment
(2) Hamming distance for similarity between sequences
(3) Alignment Game and the Longest Common Subsequence;
(9) The Manhattan Tourist Problem;
(5) The Change Problem;
(0) Dynamic programming and backtracking pointers;
(3) From Manhattan to Alignment Graph;
(8) From Global to Local Alignment;
(9) Penalizing Insertions and Deletions in Sequence Alignment;
(10) Space-Efficient Sequence Alignment;
(1) Multiple Sequence Alignment.

Chapter 5 in Bioinformatics Algorithms: An active Learning Approach (Vol.1).

## Part 2

## Dynamic Programming and Backtracking Pointers

## Dynamic Programming and Backtracking Pointers

- We come back to Longest Path Problem in a grid;



## Dynamic Programming and Backtracking Pointers

- We come back to Longest Path Problem in a grid;

There are only 2
ways to arrive to the sink:
by moving
South $\downarrow$
or by moving East $\rightarrow$


## Dynamic Programming and Backtracking Pointers

- We come back to Longest Path Problem in a grid;


## South or East?

SouthOrEast( $(, j)$ : the length of the longest path from $(0,0)$ to $(i, j)$


SouthOrEast $(n, m)=$ MAX $\left\{\begin{array}{l}\text { SouthOrEast }(n-1, m)+\text { weight of edge " } \downarrow \text { "into }(n, m) \\ \text { SouthOrEast }(n, m-1)+\text { weight of edge " } \rightarrow \text { "into }(n, m)\end{array}\right.$

## Dynamic Programming and Backtracking Pointers

- A recursive algorithm can easily define to compute the Longest Path Problem in a grid;


## SouthOrEast( $(i, j)$

If $i=0$ and $j=0$
return 0
$x=-$ infinity, $y=-i n f i n i t y$
If $i>0$
$x \leftarrow$ SouthOrEast $(i-1, j)+$ weight of the vertical edge into $(1, j)$
If $j>0$
$y \leftarrow$ SouthOrEast $(1, j-1)+$ weight of the horizontal edge into $(1, j)$ return $\max \{x, y\}$

## Dynamic Programming and Backtracking Pointers

- A recursive algorithm can easily define to compute the Longest Path Problem in a grid;

```
SouthOrEast(i,j)
If i=0 and j=0
    return 0
x= - infinity, }y=-\mathrm{ -infinity
If i>0
    x < \text { SouthOrEast( } i - 1 , j ) + \text { weight of the vertical edge into (l,j)}
If j>0
    y< SouthOrEast(I,j-1) + weight of the horizontal edge into (I,j)
return max{x,y}
```

- It visits all the possible paths: it is correct. but it is too expensive!!


## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;

We arrived to $(2,1)$
by the bold edge:
(10)


## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- We can have cases in which both choices provide a similar results;



## Dynamic Programming and Backtracking Pointers

- Now, we exploit Dynamic Programming to compute Longest Path in grid;



## Dynamic Programming and Backtracking Pointers

- Now, we can define the Dynamic Programming Recurrence as follows:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}+\text { weight of edge " " } \downarrow \text { "into }(i, j) \\
s_{i, j-1}+\text { weight of edge } \rightarrow \text { " into }(i, j)
\end{array}\right.
$$

where $s_{i, j}$ is the length of the longest path from $(0,0)$ to $(i, j)$.

## Dynamic Programming and Backtracking Pointers

- Backtracking pointer can be defined as:
the best way to get to each node

- the value in the sink node is the value of the longest path.


## Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?

## Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?


## Part 2

From Manhattan to Alignment Graph

## From Manhattan to Alignment Graph

- Extending the approach for DAGs;



## From Manhattan to Alignment Graph

- Extending the approach for DAGs;

- all the highlighted nodes can be reached in only one-way.


## From Manhattan to Alignment Graph

- Extending the approach for DAGs;

$$
S_{a}=\max _{\text {all predeceassors bof node } a}\left\{s_{b}+\text { weight of edge from } b \text { to } a\right\}
$$

4 choices:

$$
\begin{aligned}
& 5+2 \\
& 3+7 \\
& 5+4 \\
& 4+2
\end{aligned}
$$



## From Manhattan to Alignment Graph

- Extending the approach for DAGs;
$s_{a}=\max _{\text {all predecessors } b \text { of node } a}\left\{s_{b}+\right.$ weight of edge from $b$ to $\left.a\right\}$



## From Manhattan to Alignment Graph

- Dynamic Programming Recurrence for Alignment Graph

$$
s_{i, j}=\max \left\{\begin{array}{r}
s_{i-1, j}+\text { weight of edge " " } \downarrow \text { " into }(i, j) \\
s_{i, j-1}+\text { weight of edge " } \rightarrow \text { " into }(i, j) \\
s_{i-1, j-1}+\text { weight of edge " } \searrow \text { " into }(i, j)
\end{array}\right.
$$

where $s_{i, j}$ is the length of the longest path from $(0,0)$ to $(i, j)$.

all other edges - weight 0

## From Manhattan to Alignment Graph

- Dynamic Programming Recurrence for Longest Subsequence Problem

$$
s_{i, j}=\max \left\{\begin{aligned}
& s_{i-1, j}+0 \\
& s_{i, j-1}+0 \\
& s_{i-1, j-1}+0 \text { iff } V_{i} \neq W_{i} \\
& s_{i-1, j-1}+1 \text { iff } V_{i}=W_{i}
\end{aligned}\right.
$$

where $s_{i, j}$ is the length of the longest path from $(0,0)$ to $(i, j)$.

red edges $\searrow$ - weight 1
all other edges - weight 0

## From Manhattan to Alignment Graph

- Dynamic Programming Recurrence for Longest Subsequence Problem
backtracking pointers for the Longest
Common Subsequence



## From Manhattan to Alignment Graph

- Dynamic Programming Recurrence for Longest Subsequence Problem

- Blue arrows show the set of optimal alignments


## Part 2

## Penalizing Insertions and Deletions in <br> Sequence Alignment

## Penalizing Insertions and Deletions in Sequence Alignment

- it is not difficult to construct an alignment having a lot of matches at the expense of introducing more indels, ...
- but more indels we add, then less biologically relevant the alignment becomes;

How can we cope with this point?

## Penalizing Insertions and Deletions in Sequence Alignment

## How can we cope with this point?

- we can extend our score function

$$
\|m a t c h e s\|
$$

into

$$
\| \text { matches }\|-\mu\| \text { mismatches }\|-\sigma\| \text { indels } \|
$$

so that we take into account penalties associated with mismatches and indels


## Penalizing Insertions and Deletions in Sequence Alignment

- we can define a scoring matrix as follows:

|  | A C G T | - |  | A | C | G | T |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $+1-\mu 1-p r 11$ | $-\sigma$ | A | +1 |  |  | -1 |  |  |
| C | $-p 1+1-p 1-p 1$ | - $\sigma$ | C | -4 | +1 | -3 | -2 |  |  |
| G | $-\gamma 1-\mu 1+1-\mu$ | - $\sigma$ | G | -9 | -7 | +1 | -1 |  |  |
| T | $-\mu>-\mu-\mu 1$ | $-\sigma$ | T | -3 | -5 | -8 | +1 |  |  |
| - | $-\sigma-\sigma-\sigma-\sigma$ |  | - |  |  |  |  |  |  |
|  | scoring matrix |  | scoring | matrix | x wit |  | trary |  |  |

## Penalizing Insertions and Deletions in Sequence Alignment

- a strong effort was spent to define the most appropriate scores;
- for instance ....

Scoring Matrices for Amino Acid Sequences

| C Cys | 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S Ser | 0 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| T Thr | -2 | 1 | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| P Pro | -3 | 1. | 0 | 6 |  |  |  |  |  |  |  |  | Y O | ofte | en | mu | tate |  |  |  |
| A Ala | -2 | 1 | 1 | 1 | 2 |  |  |  |  |  |  |  |  |  | ell | $114$ |  |  |  |  |
| G Gly | -3 | 1 | 0 | -1 | 1 | 5 |  |  |  |  |  |  | but | ut ra | are | y m | ut |  |  |  |
| N Asn | -4 | 1 | 0 | -1. | 0 | 0 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| D Asp | - | 0 | 0 | -1... | 0 | 1. | 2 | 4 |  |  |  |  |  |  |  |  |  |  |  |  |
| E Glu | -5 | 0 | 0 | -1. | 0 | 0 | 1. | 3 | 4 |  |  |  |  |  |  |  |  |  |  |  |
| Q Cln | -5 | -1 | -1 | 0 | 0 | -1 | 1 | 2 | 2 | 4 |  |  |  |  |  |  |  |  |  |  |
| 표 His | -3 | -1 | -1 | 0 | -1. | -2 | 2 | 1 | 1. 1 | \% 3 | 6 |  |  |  |  |  |  |  |  |  |
| R Arg | -4 | 0 | -1 | 0 | -2 | -3. | 0 | -1 | -1 | 1 | 2 | 6 |  |  |  |  |  |  |  |  |
| K Iys | -5 | 0 | 0 | -1 | -1 | -2 | 1 | 0 | 0 | 1 | 0 | 3 | 5 |  |  |  |  |  |  |  |
| M Met | -5 | -2 | -1 | -2 | -1 | -3 | -2 | -3 | (1) | 2:-1 | -2 | 0 | 0 | 6 |  |  |  |  |  |  |
| I Ile | -2 | -1 | 0 | -2 | -1 | -3 | -2 | -2 | - | $2-2$ | -2 | -2 | - 2 | 2 | 5 |  |  |  |  |  |
| L Leu | -6 |  |  | -3 | -2 | -4 | -3 | -4 | -3 | -3 -2 | -2 | -3 | -3 | 4 | 2 | 6 |  |  |  |  |
| V Val | -2 | -1 | 0 | -1 | 0 | -1 | -2 | -2 | :-2 | 2 -2 | -2 | -2 | :-2 | 2 | 4 | 2 | 4 |  |  |  |
| F Phe | -4 | -3 | -3 | -5 | -5 | -5 | -4 | -6 | -5 | 5, -5 | -2 | -4 | -5 | 0 | 1 | 2 | -1 | 9 |  |  |
| Y Tyr | 0 | -3 | -3 | -5 | -3 | -5 | -2 | -4 | -4 | -4, -4 | 0 | 4 | - 4 | -2 | -1 | -1 | -2 | 7 | 10 |  |
| W Trp | -8 | -2 | -5 | -6 | -6 | -7 | -4 | -7 | -7 | -7 -5 | -3 | 2 | -3 | -4 | -5 | -2 | -6 | 0 | 0 | 17 |
|  | C | S | T | P | A | G | N | D | E | Q | H | R | K | M | I | L | V | F | Y | W |

## Penalizing Insertions and Deletions in Sequence Alignment

- How to change the dynamic programming recurrence:



## Penalizing Insertions and Deletions in Sequence Alignment

- How to change the dynamic programming recurrence:



## Penalizing Insertions and Deletions in Sequence Alignment

- How to change the dynamic programming recurrence in general way:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}+\operatorname{score}\left(v_{i},-\right) \\
s_{i, j-1}+\operatorname{score}\left(-, w_{j}\right) \\
s_{i-1, j-1}+\operatorname{score}\left(v_{i}, w_{j}\right)
\end{array}\right.
$$

