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Chapter 5 in Bioinformatics Algorithms: An active Learning Approach (Vol.1).
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Part 2
Dynamic Programming and Backtracking Pointers
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Dynamic Programming and Backtracking Pointers

We come back to Longest Path Problem in a grid;
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Dynamic Programming and Backtracking Pointers

A recursive algorithm can easily define to compute the Longest Path Problem
in a grid;
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Dynamic Programming and Backtracking Pointers

A recursive algorithm can easily define to compute the Longest Path Problem
in a grid;

It visits all the possible paths: it is correct. but it is too expensive!!
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Dynamic Programming and Backtracking Pointers
Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

We can have cases in which both choices provide a similar results;
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Dynamic Programming and Backtracking Pointers
Now, we exploit Dynamic Programming to compute Longest Path in grid;
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Dynamic Programming and Backtracking Pointers

Now, we can define the Dynamic Programming Recurrence as follows:

si,j = max
{

si−1,j + weight of edge “↓“ into (i , j)
si,j−1 + weight of edge “→“ into (i , j)

where si,j is the length of the longest path from (0, 0) to (i , j).
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Dynamic Programming and Backtracking Pointers
Backtracking pointer can be defined as:

the best way to get to each node

the value in the sink node is the value of the longest path.
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Dynamic Programming and Backtracking Pointers

How can we derive the optimal path from source to sink?
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Part 2
From Manhattan to Alignment Graph
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From Manhattan to Alignment Graph

Extending the approach for DAGs;
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From Manhattan to Alignment Graph

Extending the approach for DAGs;

all the highlighted nodes can be reached in only one-way.
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Extending the approach for DAGs;
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From Manhattan to Alignment Graph
Dynamic Programming Recurrence for Alignment Graph

si,j = max

 si−1,j + weight of edge “↓“ into (i , j)
si,j−1 + weight of edge “→“ into (i , j)

si−1,j−1 + weight of edge “↘“ into (i , j)

where si,j is the length of the longest path from (0, 0) to (i , j).

M. Beccuti BIOINFORMATICS March 2019 31 / 42



From Manhattan to Alignment Graph
Dynamic Programming Recurrence for Longest Subsequence Problem

si,j = max


si−1,j + 0
si,j−1 + 0

si−1,j−1 + 0 iff Vi 6= Wi
si−1,j−1 + 1 iff Vi = Wi

where si,j is the length of the longest path from (0, 0) to (i , j).
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From Manhattan to Alignment Graph

Dynamic Programming Recurrence for Longest Subsequence Problem
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From Manhattan to Alignment Graph

Dynamic Programming Recurrence for Longest Subsequence Problem

Blue arrows show the set of optimal alignments
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Part 2
Penalizing Insertions and Deletions

in
Sequence Alignment
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Penalizing Insertions and Deletions in Sequence Alignment

it is not difficult to construct an alignment having a lot of matches at the
expense of introducing more indels, ...

but more indels we add, then less biologically relevant the alignment becomes;

How can we cope with this point?
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Penalizing Insertions and Deletions in Sequence Alignment

How can we cope with this point?
we can extend our score function

‖matches‖

into
‖matches‖ − µ‖mismatches‖ − σ‖indels‖

so that we take into account penalties associated with mismatches and indels
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Penalizing Insertions and Deletions in Sequence Alignment

we can define a scoring matrix as follows:
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Penalizing Insertions and Deletions in Sequence Alignment
a strong effort was spent to define the most appropriate scores;

for instance ....
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Penalizing Insertions and Deletions in Sequence Alignment

How to change the dynamic programming recurrence:
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Penalizing Insertions and Deletions in Sequence Alignment
How to change the dynamic programming recurrence:
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Penalizing Insertions and Deletions in Sequence Alignment

How to change the dynamic programming recurrence in general way:
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