Appetite control and the AgRP neuronal system in zebrafish

Yoav Gothilf Dept. Neurobiology, Tel Aviv University yoavgothilf@gmail.com

Note: Many slides were removed because these are unpublished data

Whole genome duplication is a rare evolutionary event that has played a dramatic role in diversification

Zebrafish AgRPs:

AgRP2

Hypothalamic specific

Pineal enhanced

•	Photoreception
---	----------------

- Circadian clock
- Melatonin synthesis

Gene Symbol	MFD	ISH Image
*BG305792	260	
†Pdc2	215	** (Kobayashi <i>et al.</i> , 2002)
*BI671344	200	(
	200	Pineal
TExorh	200	(Mano <i>et al.</i> , 1999)
†Rbp4	185	Construction and many many of
†Pde6a	170	** (Vihtelic et al., 2005)
†Gnat1	165	Pineal, Retina (Thisse et al., 2004)
†Pde6c	150	** (Vihtelic et al., 2005)
*BI671149	140	
*BI879853	120	
†Guk1	115	Pineal, Retina (Thisse et al., 2004)
+702(00	115	Pineal. Retina
TZgc:92682	115	(Thisse <i>et al.</i> , 2004)
+O-11 1	110	Pineal. Retina
TOpnIIwl	110	(Thisse <i>et al.</i> , 2004)
Gucy2f	105	** (Brockerhoff <i>et al.</i> , 2003)
†Aanat2	105	Pineal, Retina (Thisse et al., 2004)
†GngT1	90	Pineal, Retina (Thisse <i>et al.</i> , 2004)
*AW826706	85	,,,,,,,,,,,,,,,,,,
†Zgc:73075	80	
†Tph1	80	Pineal (Thisse et al., 2004)
†Arr3	80	Pineal, Retina (Thisse et al., 2004)
†Zgc:73213	75	Pineal, Retina (Thisse et al., 2004)
*BG308558	75	
†Tph2	70	Pineal, Brain (Rauch et al., 2003)
*BI880166	70	
Elovl4	70	Pineal, Retina (Thisse et al., 2004)
†Slc25a31	70	Pineal, Retina, Background (Thisse <i>et al.</i> , 2004)
Rlbp11	70	Pineal, Retina (Thisse et al., 2004
LOC563645	70	
†Ar1312	65	Pineal, Retina (Thisse et al., 2004)
*BI671344	60	
†Crx	60	Pineal, Retina (Thisse et al., 2004
*BI670871	55	
†Zgc:73310	50	** (Vihtelic et al., 2005)
*BI671248	45	
†Rev1	45	Pineal, Retina (Thisse <i>et al.</i> , 2004 Diencephalons Midbrain
Ddc	45	(Thisse <i>et al.</i> , 2004)
*BI881745	40	
zgc:/3359	40	Pineal, Retina (Thisse et al., 2004
nme21	35	Pineal, Retina (Thisse et al., 2004
*BG738656	35	

Hypothalamic specific

Zebrafish's AgRP1 increases in response to food deprivation

Quantitative real-time PCR analysis. Under food deprivation conditions, AgRP1 (mRNA expression levels are elevated (p-value=0.0015)).

AgRP1 BAC transgenesis

The *agrp1* transgenic line

TgBAC(agrp1:Gal4-VP16), 6dpf dorsal view

Pineal enhanced

AgRP2 BAC transgenesis

AgRP neurons in mice also innervate the pituitary

Table 1. Distribution and relative abundance of AGRP-immunoreactive fibers and terminals in the rat CNS				
Anatomical sites	Agrp			
Compact	_			
Ventral part	+++			
Dorsal hypothalamic area	++			
Lateroanterior hypothalamic nucleus	+			
Lateral hypothalamic area	+++			
Ventrolateral hypothalamic nucleus	++			
Perifornical nucleus	+ + + +			
Posterior hypothalamic area	+			
Arcuate nucleus	+++++			
Median eminence, internal part	+++			
Median eminence, external part	+			
Medial tuberal nucleus	++			
Supramammillary nucleus	+			

Genome duplication scenarios

Subfunctionalization

Genome duplication scenarios

Neofunctionalization