Physiology of vision_1

Neurophysiology

Annalisa Buffo

Dept Neuroscience Rita Levi-Montalcini Neuroscience Institute Cavalieri Ottolenghi annalisa.buffo@unito.it tel 011 6706614

2018/2019

Slides on Moodle

Resources: http://purveslab.net

Neuroscience, Dale Purves, George Augustine et al Eds

Reflection

Luminous emittance (luminance)= intensity of luminous emitted flux

Illuminance = intensity of luminous flux incident on a surface

THE VISUAL SYSTEM

- 1. Images are formed on the retina thanks to the refraction of the cornea and lens
- 2. Light is transduced into electrical signals in the retina whose output are retinal ganglion cells
- 3. AP of ganglion cells relay info to the thalamus (geniculate nucleus) via the optic nerve
- 4. The optical radiation conveys info from the thalamus to the primary visual cortex (visual representation - perception)

THE VISUAL PATH PARTLY CROSSES IN THE OPTIC CHIASMA

Right visual hemifield Left visual hemifield

radiations **Formation of images** 'on focus' on the retina - point by

FOCUS on RETINA (sensitive sensory surface)

Ordered and consistent point to point image formation

STATIC REFRACTION

DINAMIC REFRACTION

Oculomotor muscle

Suspensory ligaments

Lens

cornea

Ciliary muscle

sclera

ACCOMODATION

(A) Emmetropia (normal)

PUPILLARY REFLEXES

TARSIUS

Smooth muscle

Blind spot

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Neural portion of the eye: the retina 10 layers of cells/processes

10) Limitans membrane

9) Axons of ganglion cells8) Ganglion cells

- 7) Inner Plexiform layer
- 6) Inner nuclear layers
- 5) Outer Plexiform layer
- 4) Outer nuclear layer3) Limitans membrane
- 2) Photoreceptors outer segments ₂
 1) Pigmented epithelium

Back of the eye ball

Retina neurons, Ramon y Cajal

Photoreceptors

Back of the eye ball

0

B

(A) Section of retina

Back of the eye ball

Retina + optic nerve are CNS!

Hyperpolarization in response to light

(Dark current)

glutammate

PHOTOTRANSDUCTION

Photoreceptors need to stop the activated response to allow responses to another incoming photon

- Phosphorylation of rhodopsin+ inhibition of PDE
- Adaptation: calcium inhibits cGMP cyclase, decreases affinity of Na⁺ch for cGMP, inhibits rhodopsin phosphorylation

Light decreases calcium, which reactivates the cyclase that re-opens the channels

high sensibility low spatial and temporal resolution

Low sensibility High temporal and spatial resolution

1:1:1 cone: bipolar cell: ganglion cell

CONES

Photopigments

3 sets of cones with different but overlapping absorption spectra Color vision is thrichromatic

Contribution of rodes and cones to vision

Rods	Cones
High sensibility (nocturnal vision)	Low sensibility (day vision)
- more pigments	- less pigment
- more intense signal amplification	- less intense amplification
- Low temporal resolution (summation)	- high temporal resolution
Achromatic vision	Chromatic vision
(only one type of pigment)	(3 types of pigments)
Convergent connections	Non convergent
(low visual acuity)	(high visual acuity)
Not in the fovea	High density in the fovea, absent in peripheral retina

GC axons: 1% of photoreceptors The retina circuits modify the info collected by photoreceptors

Bipolar cells, amacrine cells, horizontal cells elaborate the signals transmitted by rod and cones and **extract spatial and temporal features of visual stimuli**

Spatial and temporal filters based on inhibitory circuits

On/off center-surround receptive fields also for ganglion cells:

- Circular
- 2 regions: central spot + surround (concentric)
- cell types: on center, off center cells

- On/off center cells are about equal in numbers
- Receptive fields have overlapping distributions
- Every point on the retina (each point of the visual field is analyzed by several ganglion cells)

Impact on function of retinal ganglion cells and on the structure of their receptive fields

Effects of circuit integration: on-center, off-center receptive fields on-center, off-center bipolar cells and ganglion cells

How opponent center surround zones are generated

Horizontal cells: antagonize receptors' responses to light

Ganglion cells do not signal diffuse illumination

Not simple photodetectors

The perceived brightness of objects depends on that of the background (luminance contrast): Ganglion cells are not photoreceptors – they code contrast - not the absolute intensity of stimuli

© Dale Purves and R. Beau Lotto 2002

Ganglion cells

Ganglion cells are never silent

Small light spots are more effective than uniform illumination

The discarge frequency of ganglion cells does not reflect the absolute intensity of the stimulus but the diference of intensities of the stimuli applied in the center vs the surround

Most informative: regions where there are differences in luminance

Field of view

Spatial localization

