
Our ability to reason and comprehend our world requires the coherent activity of 
billions of neurons in our brain. Our biological existence is rooted in seamless 
interactions between thousands of genes and metabolites within our cells.
These systems are collectively called complex systems, capturing the fact that it is 
difficult to derive their collective behavior from a knowledge of the system’s 
components.

A key discovery of network science is that the architecture of networks emerging in 
various domains of science, nature, and technology are similar to each other, a 
consequence of being governed by the same organizing principles. Consequently 
we can use a common set of mathematical tools to explore these systems.

Completed in 2001, the human genome project offered the first comprehensive list of all human 
genes. Yet, to fully understand how our cells function, and the origin of disease, a full list of genes 
is not sufficient: We also need an accurate map of how genes, proteins, metabolites and other 
cellular components interact with each other. Indeed, most cellular processes, from food 
processing to sensing changes in the environment, rely on molecular networks. The breakdown of 
these networks is responsible for human diseases.

Networks

Network Biology

Network Pharmacology

Network Medicine



Gene Networks
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Lecture 13 - Networks
Inference, Analysis, and Applications

6.047/6.878/HST.507
Computational Biology: Genomes, Networks, Evolution

Soheil Feizi

Module III: Regulation, Epigenomics, Networks

• Computational Foundations: Machine learning, dealing with noisy data
– L10: Clustering/classification: Supervised/unsupervised learning
– L11: Burrows-Wheeler Transform. Peak calling. Multivariate HMMs. 
– L12: Expectation Maximization (EM), Gibbs Sampling, Information theory
– L13: Network algorithms, probabilistic interpretation, linear algebra
– L14: Normalization, Reproducibility, False Discovery Rate, Integration

• Biological frontiers: Gene Regulation, Regulatory Systems Genomics
– L10: Gene expression analysis. 
– L11: Epigenomics and Chromatin state. 
– L12: Regulatory motif discovery. 
– L13: Biological Network inference and analysis. 
– L14: Integrative genomics and the ENCODE project. 

Goals for today: Network analysis 
1. Introduction to networks 

– Network types: regulatory, metab., signal., interact., func. 
– Structural, probabilistic, and linear algebra views 

2. Predictive networks (graphical probabilistic models) 
– Conditional indepd. for (un)directed graphical models 
– Expr. pred: edge potentials, regression (linear, trees) 
– Func. pred: Guilt by association, hierarchical classification 

3. Network inference (inferring network structure) 
– Structure learning: likelihood approach, correlation 
– Integrative network inference: additive, probabilistic 

4. Structural properties of regulatory networks 
– Global properties: Degree distribution, scale free 
– Local properties: Network motifs 

5. Matrix operations on networks 
– Linear algebra view of networks 
– Spectral clustering and modular networks  
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Five major types of biological networks 
Regulatory network Metabolic network 
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Network definitions: structural, probabilistic 

• Graph theory: Nodes, edges, weights, paths 
• Probabilistically: Bayesian Networks 

– A model to represent “dependencies” among variables 
– Unconnected nodes are conditionally independent 

• Linear algebra: Matrices, powers, decomposition 
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• Two types of binary graphs: directed/undirected networks 

Network applications and challenges 
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Goals for today: Network analysis 
1. Introduction to networks 

– Network types: regulatory, metab., signal., interact., func. 
– Structural, probabilistic, and linear algebra views 

2. Predictive networks (graphical probabilistic models) 
– Conditional indepd. for (un)directed graphical models 
– Expr. pred: edge potentials, regression (linear, trees) 
– Func. pred: Guilt by association, hierarchical classification 

3. Network inference (inferring network structure) 
– Structure learning: likelihood approach, correlation 
– Integrative network inference: additive, probabilistic 

4. Structural properties of regulatory networks 
– Global properties: Degree distribution, scale free 
– Local properties: Network motifs 

5. Matrix operations on networks 
– Linear algebra view of networks 
– Spectral clustering and modular networks  

Regulatory network: Input / output 

• Gene expression prediction: 
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Intractable to compute joint distribution 
! Focus on marginal distributions.  
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Number of nodes, or N, represents the number of components in the system. We will often 
call N the size of the network. To distinguish the nodes, we label them with i = 1, 2, ..., N.

Number of links, which we denote with L, represents the total number of interactions between the 
nodes. Links are rarely labeled, as they can be identified through the nodes they connect.

§ components: nodes, vertices N

§ interactions:  links, edges L

§ system:  network, graph (N,L)

General Introduction



Links: undirected (symmetrical) 

Graph:
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Node degree: the number of links connected to the node.
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In directed networks we can define an in-degree and out-degree. 

The (total) degree is the sum of in- and out-degree.

Source: a node with kin= 0; Sink: a node with kout= 0.
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N – the number of nodes in the graph
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Here the 1/2 factor corrects for the fact that in the sum (2.1) each link 
is counted twice.
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Degree distribution
P(k): probability that a
randomly chosen node 

has degree k

Nk = # nodes with degree k

P(k) = Nk / N     ➔ plot

Degree distribution



The degree distribution has taken a central role in net-
work theory following the discovery of scale-free networks 
(Barabási & Albert, 1999). Another reason for its impor-
tance is that the calculation of most network properties re-
quires us to know pk. For example, the average degree of a 
network can be written as

      

We will see in the coming chapters that the precise func-
tional form of pk determines many network phenomena, 
from network robustness to the spread of viruses.

∑=
=

∞

k kpk
k 0

Image 2.4a
Degree distribution.

The degree distribution is defined as the pk = Nk /N ratio, where Nk denotes 
the number of k-degree nodes in a network. For the network in (a) we 
have N = 4 and p1 = 1/4 (one of the four nodes has degree k1 = 1), p2 = 
1/2 (two nodes have k3 = k4 = 2), and p3 = 1/4 (as k2 = 3). As we lack nodes 
with degree k > 3, pk = 0 for any k > 3. Panel (b) shows the degree distri-
bution of a one dimensional lattice. As each node has the same degree k = 
2, the degree distribution is a Kronecker’s delta function pk = H(k - 2).

Image 2.4b
  

In many real networks, the node degree can vary considerably. For exam-
ple, as the degree distribution (a) indicates, the degrees of the proteins in 
the protein interaction network shown in (b) vary between k=0 (isolated 
nodes) and k=92, which is the degree of the largest node, called a hub. 
There are also wide differences in the number of nodes with different 
degrees: as (a) shows, almost half of the nodes have degree one (i.e. 
p1=0.48), while there is only one copy of the biggest node, hence p92 = 1/
N=0.0005.  (c) The degree distribution is often shown on a so-called log-
log plot, in which we either plot log pk in function of log k, or, as we did in 
(c), we use logarithmic axes. 

DEGREE, AVERAGE DEGREE, AND DEGREE DISTRIBUTION | 29

Degree distribution indicates, the degrees of the proteins in the 
protein interaction network shown in (b) vary between k=0 
(isolated nodes) and k=92, which is the degree of the largest 
node, called a hub. 

There are also wide differences in the number of nodes 
with different degrees: as (a) shows, almost half of the 
nodes have degree one (i.e. p1=0.48), while there is only 
one copy of the biggest node, hence p92 = 1/ N=0.0005.

Log-log plot

Degree distribution



Aij=1 if there is a link between node i and j

Aij=0 if nodes i and j are not connected to each other.

Note that for a directed graph (right) the matrix is not symmetric.
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Aij=1 if there is a link between node i and j

Aij=0 if nodes i and j are not connected to each other.

Note that for a directed graph (right) the matrix is not symmetric.
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The maximum number of links a network 
of N nodes can have is:

� 

Lmax =
N
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = N(N −1)

2

A graph with degree L=Lmax is called a complete graph, 
and its average degree is <k>=N-1

Complete Graph

Most networks observed in real systems are sparse: 

L <<  Lmax 
or 

<k> <<N-1.  

Protein (S. Cerevisiae): N=    1,870; L=4,470 Lmax=107 <k>=2.39 
Coauthorship (Math): N=  70,975; L=2 105 Lmax=3 1010 <k>=3.9



bipartite graph (or bigraph) is a graph whose nodes can be divided 
into two disjoint sets U and V such that every link connects a node in U to 
one in V; that is, U and V are independent sets. 

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)

Network Science: Graph Theory 

Bipartite Graph



Gene network

GENOME

PHENOMEDISEASOME  

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

Bipartite Graph



Human Disease Network



Human Disease NetworkIn many applications we need to study weighted networks, 
where each link (i, j) has a unique weight wij



In networks physical distance is replaced by path length. A path is a route that runs along 
the links of the network. A path’s length represents the number of links the path contains

•. A path between nodes i0 and in is an ordered list of n links P = {(i0, i1), (i1, i2), (i2, i3), ... ,(in-1, in)}. The length of this 
path is n. The path shown in orange in (a) follows the route 1→2→5→7→4→6, hence its length is n = 5.

•. The shortest paths between nodes 1 and 7, or the distance d17, correspond to the path with the fewest number of 
links that connect nodes 1 to 7. There can be multiple paths of the same length, as illustrated by the two paths shown in 
orange and grey. The network diameter is the largest distance in the network, being dmax = 3 here.

Paths



The distance (shortest path, geodesic path) between two 
nodes is defined as the number of edges along the shortest
path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of 
the arrows.
Thus in a digraph the distance from node A to B (on an AB 
path) is generally different from the distance from node B to A 
(on a BCA path).D

C

A

B

D
C

A

B

Paths
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l1!4 = 3

The	path	with	the	shortest	
length	between	two	nodes	

(distance).	
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Paths



Average	path	length/distance,	<d>,		for	a	connected	graph:

where	dij is	the	distance	from	node	 i to	node	 j

In	an	undirected	graph dij =dji ,	sowe	only	need	to	count	them	once:
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Average	Path	Length

(l1!2 + l1!3 + l1!4+
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+ l4!5) /10 = 1.6

The	average	of	the	shortest	paths	for	
all	pairs	of	nodes.

Paths
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Eulerian Path Hamiltonian	Path

A	path	that	visits	each	
node	exactly	once.

A	path	that	traverses	each	
link	exactly	once.

Paths



Distance between node 0 and node 4:

1.Start at 0.

Network Science: Graph Theory Network Science: Graph Theory 
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Network Science: Graph Theory 

0

Breadth First Search

 •. Start at node i, that we label with “0”. 
 •. Find the nodes directly linked to i. Label them distance “1” and put them in a queue. 
 •. Take the first node, labeled n, out of the queue (n = 1 in the first step). Find the unlabeled 

nodes adjacent to it in the graph. Label them with n + 1 and put them in the queue. 
 •. Repeat step 3 until you find the target node j or there are no more nodes in the queue. 
 •. The distance between i and j is the label of j. If j does not have a label, then dij = ∞. 
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Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.
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Breadth First Search

 •. Start at node i, that we label with “0”. 
 •. Find the nodes directly linked to i. Label them distance “1” and put them in a queue. 
 •. Take the first node, labeled n, out of the queue (n = 1 in the first step). Find the unlabeled 

nodes adjacent to it in the graph. Label them with n + 1 and put them in the queue. 
 •. Repeat step 3 until you find the target node j or there are no more nodes in the queue. 
 •. The distance between i and j is the label of j. If j does not have a label, then dij = ∞. 
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Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue.
3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the 
graph. Mark them with the label of 2. Put them in the queue.
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1

Breadth First Search

 •. Start at node i, that we label with “0”. 
 •. Find the nodes directly linked to i. Label them distance “1” and put them in a queue. 
 •. Take the first node, labeled n, out of the queue (n = 1 in the first step). Find the unlabeled 

nodes adjacent to it in the graph. Label them with n + 1 and put them in the queue. 
 •. Repeat step 3 until you find the target node j or there are no more nodes in the queue. 
 •. The distance between i and j is the label of j. If j does not have a label, then dij = ∞. 



Distance between node 0 and node 4:

1.Repeat until you find node 4  or there are no more nodes in the queue.
2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

Network Science: Graph Theory 
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In an undirected network nodes i and j are connected if there is a path between them. 
They are disconnected if such a path does not exist, in which case we have dij = ∞.

A network is connected if all pairs of nodes in the network are connected. 
A network is disconnected if there is at least one pair with dij = ∞

A components a subset of nodes in a network, so that there is a path between any two 
nodes that belong to the component, but one cannot add any more nodes to it that would 
have the same property.

Bridge: if  we erase it, the graph becomes disconnected. 

Largest Component: 
Giant Component

The rest: Isolates
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Connectivity in graphs

Disconnected graph in PN?



The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero:

Network Science: Graph Theory 

Connectivity in graphs



Strongly connected directed graph: has a path from each node to 
every other node and vice versa (e.g. AB path and BA path).
Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.   
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Connectivity in graphs



Clustering Coefficient
The clustering coefficient captures the degree to which the neighbours of a 
given node link to each other. For a node i with degree ki the local clustering 
coefficient is defined as 

where Li represents the number of links between the ki neighbors of node i. Note that Ciis between 0 and 1:
• Ci = 0 if none of the neighbors of node i link to each other.
• Ci = 1 if the neighbors of node i form a complete graph, i.e. they all link to each other.
• Ci is the probability that two neighbors of a node link to each other. Consequently C = 0.5 implies that there is a 50% 

chance that two neighbors of a node are linked.



Clustering CoefficientThe degree of clustering of a whole network is captured by 
the  average clustering coefficient,  C , representing the average 
of Ci over all nodes i = 1, ..., N [12],

In line with the probabilistic interpretation  C  is the probability 
that two neighbors of a randomly selected node link to each 
other.

Connected triplet is an ordered set of three nodes ABC such that A connects to B and 
B connects to C. For example, an A, B, C triangle is made of three triplets, ABC, BCA 
and CAB. In contrast a chain of connected nodes A, B, C, in which B connects to A and 
C, but A does not link to C, forms a single open triplet ABC. The factor three in the 
numerator of (2.17) is due to the fact that each triangle is counted three times in the 
triplet count.



Clustering CoefficientThe degree of clustering of a whole network is captured by 
the  average clustering coefficient,  C , representing the average 
of Ci over all nodes i = 1, ..., N [12],

In line with the probabilistic interpretation  C  is the probability 
that two neighbors of a randomly selected node link to each 
other.

0

0

1/6

1/3 2/3

10

Connected triplet is an ordered set of three nodes ABC such that A connects to B and 
B connects to C. For example, an A, B, C triangle is made of three triplets, ABC, BCA 
and CAB. In contrast a chain of connected nodes A, B, C, in which B connects to A and 
C, but A does not link to C, forms a single open triplet ABC. The factor three in the 
numerator is due to the fact that each triangle is counted three times in the triplet count.
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Undirected	network
N=2,018	proteins	as	nodes
L=2,930	binding	 interactions	as	links.	
Average	degree		<k>=2.90.	

Not	connected:		185	components
the	largest	(giant	component)	 1,647		
nodes

Protein Protein Interaction NetworkA protein-protein interaction network, where two proteins are 
connected if there is experimental evidence that they can bind 
to each other in the cell.

Mean Cluster coefficient = 0.12



pk is the probability that a 
node has degree k. 

Nk = # nodes with degree k

pk = Nk / N    

Protein Protein Interaction Network



dmax=14

<d>=5.61

Protein Protein Interaction Network



Most networks we encounter do not have the comforting regularity of a crystal 
lattice or the predictable radial architecture of a spider web, but it is not always 
constructed by regularity.

Defining Random Networks

There are two definitions of a random network:
• G(N, L) Model: N labeled nodes are connected with L randomly placed links. Erdős and Rényi used 

this definition in their string of papers on random networks [2-9]
• G(N, p) Model: Each pair of N labeled nodes is connected with probability p, a model introduced by 

Gilbert.

Hence, the G(N, p) model fixes the probability p that two nodes are connected and the G(N, L)) model 
fixes the total number of links L. While in the G(N, L) model the average degree of a node is simply ‹k› = 
2L/N, other network characteristics are easier to calculate in the G(N, p) model. The G(N, p) model, is ease  
to calculate key network characteristics, and in real networks the number of links rarely stays fixed.

To construct a random network we follow these steps:
•. Start with N isolated nodes.
•. Select a node pair and generate a random number between 0 and 1. If the number exceeds p, 

connect the selected node pair with a link, otherwise leave them disconnected.
•. Repeat step (2) for each of the N(N-1)/2 node pairs.

In summary the number of links in a random network varies between realizations. Its expected value is 
determined by N and p. If we increase p a random network becomes denser: The average number of links 
increase linearly from ‹L› = 0 to Lmax and the average degree of a node increases from ‹k› = 0 to ‹k› = N-1.

Random Network



In a given realization of a random network some nodes gain numerous links, while 
others acquire only a few or no links. These differences are captured by the degree 
distribution, pk, which is the probability that a randomly chosen node has degree k.

Random Network

Three realizations of a random network with p=0.03 
and N=100. Several nodes have degree k=0, shown 
as isolated nodes at the bottom.

Three realizations of a random network 
generated with the same parameters  p=1/6 
and N=12. Despite the identical parameters, the 
networks not only look different, but they have a 
different number of links as well (L=10, 10, 8).



In a given realization of a random network some nodes gain numerous links, while others acquire only a few 
or no links. These differences are captured by the degree distribution, pk, which is the probability that a 
randomly chosen node has degree k.

Random Network

The exact form of the degree distribution of a random network is the binomial distribution(left half). For N ›› ‹k› 
the binomial is well approximated by a Poisson distribution (right half). As both formulas describe the same 
distribution,they have the identical properties, but they are expressed in terms of different parameters: The binomial 
distribution depends on p and N, while the Poisson distribution has only one parameter, ‹k›. It is this simplicity that 
makes the Poisson form preferred in calculations.



Random Network: not for real life!

The degree distribution of the (a) Internet, (b) science collaboration network, and (c) protein interaction network. 
The green line corresponds to the Poisson prediction, obtained by measuring ‹k› for the real network and then plotting. 
The significant deviation between the data and the Poisson fit indicates that the random network model underestimates the 
size and the frequency of the high degree nodes, as well as the number of low degree nodes. Instead the random network 
model predicts a larger number of nodes in the vicinity of ‹k› than seen in real networks.



The World Wide Web is a network whose nodes are documents and 
the links are the uniform resource locators (URLs) that allow us to 
“surf” with a click from one web document to the other. With an 
estimated size of over one trillion documents (N≈1012), the Web is the 
largest network humanity has ever built. It exceeds in size even the 
human brain (N ≈ 1011 neurons).

The first map of the WWW obtained with the explicit goal of understanding 
the structure of the network behind it was generated by Hawoong Jeong 
at University of Notre Dame. He mapped out the nd.edu domain, 
consisting of about 300,000 documents and 1.5 million links

Scale Free Network



Scale Free Network



Scale Free Network

Vilfredo Pareto, a 19th century economist, noticed that in Italy a few 
wealthy individuals earned most of the money, while the majority of 
the population earned rather small amounts. He connected this 
disparity to the observation that incomes follow a power law, 
representing the first known report of a power law distribution. His 
finding entered the popular literature as the 80/20 rule: roughly 80 
percent of money is earned by only 20 percent of the population. The 
80/20 emerges in many areas
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Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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p(k) = Ce��k .

There appears to be little difference between 
them at the first look. Yet. There is some 
quite relevant different: the at high degrees 
the power law curve is always higher than 
the exponential.

Scale Free Network

P (k) ≈ kγ 



THE SCALE FREE PROPERTY HUBS12

(a) The degrees of a random network follow a 
Poisson distribution, rather similar to the Bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways connect-
ing them. There are no cities with hundreds of 
highways and no city is disconnected from the 
highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports to each other. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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P (k) ≈ kγ 

Scale Free Network

Organisms from all three 
domains of life are  scale-free!

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Archaea Bacteria Eukaryotes
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C. Elegans

Li et al. Science 2004

Drosophila M.

Giot et al. Science 2003

Scale Free Network



Rual et al. Nature 2005; Stelze et al. Cell 2005

Scale Free Network



Architectural features of cellular networks

Random networks The ER model start with N nodes and connects each
pair of nodes with probability p. The node degree follow a Poisson
distribution, means that most modes have approximately the same number
of links. The clustering coefficient is independent of node’s degree. The
mean path length si proportional to the logarithm of network size l ≈ logN .

25

Random Network



Architectural features of cellular networks

Scale-free networks
Most nodes are poorly while a few are highly connected (Hubs). The
degree distribution approximates a power law: P (k) ≈ kγ , where γ is the
degree exponent. The smaller the γ, the more important is the role of the
Hubs. Most biological networks have 2 < γ < 3. For γ > 3, Hubs are
irrelevant and the network behaves like a random network. The mean
shortest path length is proportional to ≈ (log(logN )) (ie. Much shorter
than Small World Property).

26

Scale Free Network



Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.

The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes. 

Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier.

Ultra 
Small 
World 

Small 
World

Scale Free Network

<d>

P (k) ≈ kγ 



Scale Free Network

Starting from three connected nodes (top left), in each image a new node (shown as an empty circle) is added 
to the network. When deciding where to link, new nodes prefer to attach to the more connected nodes, a 
process known as preferential attachment. Thanks to growth and preferential attachment, a rich-gets-richer 
process is observed, which means that the highly connected nodes acquire more links than those that are less 
connected, leading to the natural emergence of a few highly connected hubs. The node size, which was chosen 
to be proportional to the node’s degree, illustrates the natural emergence of hubs as the largest nodes.



Scale Free Network



Assortative:
hubs show a tendency to 
link to each other.

Neutral: 
nodes connect to each 
other with the expected 
random probabilities.

Disassortative: 
Hubs tend to avoid 
linking to each other.

Quantifying degree correlations (three approaches):
à full statistical description (Maslov and Sneppen, Science 2001)
à degree correlation function (Pastor Satorras and Vespignani, PRL 2001)
à correlation coefficient (Newman, PRL 2002)

Network Science: Degree Correlations  March 7, 2011

Scale Free Network



Network Science: Degree Correlations  March 7, 2011

r>0: assortative network:
Hubs tend to connect to other hubs.

r<0: disassortative network:
Hubs tend to connect to small nodes.

Social networks 
are assortative

Biological, 
technological 
networks are 
disassortative

Scale Free Network



Robustness is a central question in biology and 
medicine, helping us understand why some 
mutations lead to diseases and others do not.

Networks play a key role in the robustness of biological, social and 
technological systems. Indeed, a cell's robustness is encoded in 
intricate regulatory, signaling and metabolic networks

The removal of a single node has only limited 
impact on a network’s integrity. The removal of 
several nodes, however, can break a network 
into several isolated components. Obviously, 
the more nodes we remove, the higher are the 
chances that we damage a network, prompting 
us to ask: How many nodes do we have to 
delete to fragment a network into isolated 
components?

Robustness



Robustness

If f is small, the missing nodes do little damage to 
the network. Increasing f, however, can isolate 
chunks of nodes from the giant component. 
Finally, for sufficiently large f the giant component 
breaks into tiny disconnected components

This fragmentation process is not gradual, but it is 
characterized by a critical threshold fc: For 
any f< fc we continue to have a giant component. 
Once f exceeds fc, the giant component vanishes. 
This is illustrated by the f-dependence of P∞, 
representing the probability that a node is part of 
the giant component: P∞ is nonzero under fc, but it 
drops to zero as we approach fc.



To illustrate the robustness of a scale-free network we start from the scale-free network. Next we randomly select 
and remove nodes one-by-one. As the movie illustrates, despite the fact that we remove a significant fraction of 
the nodes, the network refuses to break apart.

Robustness



Robustness

The estimated fc for random node failures (second column) and attacks (fourth column) for ten reference networks



	 For small  k  the hub holds the network 
together. Once we remove this central hub the network 
breaks apart. Hence the attack and error curves are 
well separated, indicating that the network is robust to 
random failures but fragile to attacks.


	 •For larger  k  a giant component emerges, that 
exists even without the central hub. Hence while the 
hub enhances the system’s robustness to random 
failures, it is no longer essential for the network.


For even larger  k  the error and the attack curves 
are indistinguishable, indicating \that the network's 
response to attacks and random failures is 
indistinguishable. In this case the network is well 
connected even without its central hub.


Robustness



Communities

J.S
tat.M

ech.
(2008)

P
10008

Fast unfolding of communities in large networks

Figure 2. Graphical representation of the network of communities extracted from
a Belgian mobile phone network. About 2 million customers are represented on
this network. The size of a node is proportional to the number of individuals in the
corresponding community and its colour on a red–green scale represents the main
language spoken in the community (red for French and green for Dutch). Only the
communities composed of more than 100 customers have been plotted. Notice
the intermediate community of mixed colours between the two main language
clusters. A zoom at higher resolution reveals that it is made of several sub-
communities with less apparent language separation.

groups of people, where language ceases to be a discriminating factor, might possibly
play a crucial role for the integration of the country and for the emergence of consensus
between the communities [36]. One may indeed wonder what would happen if the
community at the interface between the two language clusters in figure 2 was to be
removed.

doi:10.1088/1742-5468/2008/10/P10008 8

Belgium appears to be the model bicultural society: 59% of its citizens are Flemish, speaking 
Dutch and 40% are Walloons who speak French.

Communities extracted from the call pattern of the consumers of the 
largest Belgian mobile phone company. The network has about two 
million mobile phone users. The nodes correspond to communities, 
the size of each node being proportional to the number of individuals 
in the corresponding community. The color of each community on a 
red–green scale represents the language spoken in the particular 
community, red for French and green for Dutch. Only communities of 
more than 100 individuals are shown. The community that connects 
the two main clusters consists of several smaller communities with 
less obvious language separation, capturing the culturally mixed 
Brussels, the country’s capital.

In network science we call a community a group of nodes that have a higher likelihood of connecting to each other than to 
nodes from other communities.



Communities

Communities play a particularly important role in our 
understanding of how specific biological functions are 
encoded in cellular networks.

Communities play a particularly important role in understanding human diseases. Indeed, proteins 
that are involved in the same disease tend to interact with each other. This finding inspired the 
disease module hypothesis, stating that each disease can be linked to a well-defined neighborhood 
of the cellular network.



Communities
R E P O R T S

30 AUGUST 2002 VOL 297 SCIENCE www.sciencemag.org1554

The color of each node, capturing the 
predominant biochemical class to which it 
belongs, indicates that different functional 
classes are segregated in distinct network 
neighborhoods. The highlighted region 
selects the nodes that belong to the 
pyrimidine metabolism, one of the predicted 
communities.

The topologic overlap matrix of 
the E. coli metabolism and the 
corresponding dendrogram that 
allows us to identify the 
modules



Communities

Strong and Weak Communities 

To relax the rigidity of cliques, consider a connected subgraph C of NC nodes in a network. The internal degree kiint of 
node i is the number of links that connect i to other nodes in C. The external degree kiextis the number of links that 
connect i to the rest of the network. If kiext=0, each neighbor of i is within C, hence C is a good community for node i. 
If kiint=0, then node i should be assigned to a different community. These definitions allow us to distinguish two kinds of 
communities

Maximum Cliques: In graph theoretic terms this means that a community is a complete subgraph, or a clique. 

strong community:
each node has more links within the 
community than with the rest of the graph. 

k int
i (C ) > kext

i (C )

weak community:
the total internal degree of the subgraph
exceeds its total external degree, 

∑
i∈C

k in
i (C ) > ∑

i∈C
kout

i (C )

A clique correspond
s to a complete 
subgraph.

A strong 
community

A weak 
community



Step 1: Define the Similarity Matrix.

• high for node pairs that likely belong to the same community;
• low for those that likely belong to different communities. 
• Nodes that connect directly to each other and/or share multiple neighbors are 

more likely to belong to the same dense local neighborhood, hence their  
should be large.

Topological overlap matrix:

JN(i,j):  number of common neighbors of node i and j;  
(+1) if there is a direct link between i and j;

To uncover the community structure of large real networks we need algorithms whose running time grows 
polynomially with N. Hierarchical clustering. 

The starting point of hierarchical clustering is a similarity matrix, whose elements xij indicate the distance 
of node i from node j. In community identification the similarity is extracted from the relative position of 
nodes i and j within the network.


Communities



J=1 if nodes  and  have the same neighbors (A&B)

J=0 if  do not have common neighbors, nor do they link to each other (A&E)

Members of the same dense local neighborhood have high JN(i,j), like nodes H, 
I, J, K


Communities



Step 2: Decide Group Similarity. 

• groups are merged based on their mutual similarity:

single, complete and average cluster similarity
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I
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HG KF
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I
1" 2"

(a)"
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Single'Linkage:'

Average'Linkage:'Complete'Linkage:'

xij =

H I J K
E 2.22 2.75 3.08 3.46
F 2.68 3.38 3.40 3.97
G 1.59 2.31 2.34 2.88

1" 2"

1" 2" 1" 2"

x12 = 1.59

x12 = 3.97
x12 = 2.84
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Step 3: Apply Hierarchical Clustering 

• Assign each node to a community of its own and evaluate  for all node 
pairs. The initial similarities between these “communities” are simply the 
node similarities.

• Find the community pair with the highest similarity and merge them to 
form a single community.

• Calculate the similarity between the new community and all other 
communities.

• Repeat from Step 2 until all nodes are merged into a single community.

Step 4: Build Dendrogram. 
• describes the precise order in which the nodes are assigned to communities. 

Communities



Communities

For example, the dendrogram of Figure 9.13B tells us that the algorithm first merged nodes A and B, K 
and J and E and F, as each pair has . Next node C was added to the (A, B) community; I to (K, J) and G 
to (E, F). Eventually this procedure correctly identified the three obvious communities (ABC, EFG, and 
HIJK). The dendrogram also captures the fact that the EFG and the HIJK communities are closer to each 
other that to the ABC module.
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Ambiguity in Hierarchical Clustering  
Hierarchical clustering does not tell us where to cut a dendrogram. Indeed, depending on where we make the cut 
in the dendrogram of Image 9.9a, we obtain (b) two, (c) three or (d) four communities. While for a small network 
we can visually decide which cut captures best the underlying community structure, it is impossible to do so in 
larger networks.



Communities

To generalize these ideas to a full network consider the complete partition that breaks the network into nc communities. To 
see if the local link density of the subgraphs defined by this partition differs from the expected density in a randomly wired 
network, we define the partition’s modularity by summing (9.11) over all nc communities

Higher Modularity Implies Better Partition 
The higher is M for a partition, the better is the corresponding community structure. Indeed, in Image 9.16a the partition with 
the maximum modularity (M=0.41) accurately captures the two obvious communities. A partition with a lower modularity 
clearly deviates from these communities (Image 9.16b). Note that the modularity of a partition cannot exceed one [31,32].


Zero and Negative Modularity  
By taking the whole network as a single community we obtain M=0, as in this case the two terms in the parenthesis of (9.12) 
are equal (Image 9.16c). If each node belongs to a separate community, we have Lc=0 and the sum (9.12) has nc negative 
terms, hence M is negative (Image 9.16d).
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Module networks: identifying regulatory modules and their
condition-specific regulators form gene expression data

• The complex functions of a living cell are carried out through the
concerted activity of many genes and gene products. This activity is
often coordinated by the organization of the genome into regulatory
modules, or sets of coregulated genes that share a common function.

• Identifying this organization is crucial for understanding cellular
responses to internal and external signals.

• Genome-wide expression profiles

Goal Module networks procedure; a method based on probabilistic
graphical models for inferring regulatory modules from gene expression
data.
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Assumption The regulators are themselves transcriptionally regulated, so
that their expression profiles provide information about their activity level.

Procedure
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The algorithm searches simultaneously for a partition of genes into modules
and for a regulation program for each module that explains the expression
behavior of genes in the module. The regulation program of a module.
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Respiration module Hap4 TF module’s top regulator, indeed Hap4-DNA
biding sequence motif is present in 29 of 55 genes in the module.
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Regulatory components
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Genetic networks
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Summary


