Networks

Our ability to reason and comprehend our world requires the coherent activity of
billions of neurons in our brain. Our biological existence is rooted in seamless
interactions between thousands of genes and metabolites within our cells.

These systems are collectively called complex systems, capturing the fact that it is
difficult to derive their collective behavior from a knowledge of the system’s
components.

A key discovery of network science is that the architecture of networks emerging in
various domains of science, nature, and technology are similar to each other, a
consequence of being governed by the same organizing principles. Consequently
we can use a common set of mathematical tools to explore these systems.

Completed in 2001, the human genome project offered the first comprehensive list of all human
genes. Yet, to fully understand how our cells function, and the origin of disease, a full list of genes
is not sufficient: We also need an accurate map of how genes, proteins, metabolites and other
cellular components interact with each other. Indeed, most cellular processes, from food
processing to sensing changes in the environment, rely on molecular networks. The breakdown of
these networks is responsible for human diseases.
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A transcription factor, a
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Network’s type
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Network’s type

Five major types of biological networks




General Introduction

Number of nodes, or N, represents the number of components in the system. We will often
call N the size of the network. To distinguish the nodes, we label them withi=1, 2, ..., N.

Number of links, which we denote with L, represents the total number of interactions between the
nodes. Links are rarely labeled, as they can be identified through the nodes they connect.

= components: nodes, vertices N

= interactions: links, edges L

= system: network, graph (N,L)



Undirected

Links: undirected (symmetrical)

Graph:

Undirected links :
coauthorship links
Actor network

protein interactions

Directed

Links: directed (arcs).

Digraph = directed graph:

An undirected
linkis the
superposition of
two opposite
directed links.
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Www

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

NODES

Routers

Webpages

Power plants, transformers
Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

LINKS

Internet connections
Links

Cables

Calls

Emails
Co-authorship
Co-acting

Citations

Chemical reactions

Binding interactions

DIRECTED
UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed
Directed

Undirected

192,244
325,729
4,941
36,595
57.194
23,133
702,388
449,673
1,039
2,018

609,066
1,497134
6,594
91,826
103,731
93,439
29,397,908
4,689,479
5,802

2,930




Undirected

Directed

Node degrees

Node degree: the number of links connected to the node.

In directed networks we can define an in-degree and out-degree.

The (total) degree is the sum of in- and out-degree.

k=2 k=1 k.=3

Source: a node with ki'= 0; Sink: a node with kout= Q.



Undirected

Directed

Average degree

Here the 1/2 factor corrects for the fact that in the sum (2.1) each link
is counted twice.

(k)= 2ok (K)=2C

=N : N
C/D N —the number of nodes in the graph
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Degree distribution

P(k): probability that a (& ;
randomly chosen node ) 1

has degree k o . l .
" |

@
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Nk = # nodes with degree k @ A
P(k)=Nk/N = plot ® ®
& &



Degree distribution indicates, the degrees of the proteins in the
protein interaction network shown in (b) vary between k=0
(isolated nodes) and k=92, which is the degree of the largest

Degree distribution

node, called a hub. a) 05 5
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There are also wide differences in the number of nodes
with different degrees: as (a) shows, almost half of the
nodes have degree one (i.e. p1=0.48), while there is only
one copy of the biggest node, hence p92 = 1/ N=0.0005.
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Adjacency Matrix

Aij=1 if there is a link between node /and j
Undirect

Aij=0 if nodes / and j are not connected to each other.

Direct Az-j = 1 if there is a link pointing from node jand i

A;; = 0 if there is no link pointing from j to i.



Adjacency Matrix

Aij=1 if there is a link between node /and j

Undirect
Aij=0 if nodes / and j are not connected to each other.
[0 1 0 1) [0 0 0 0)
4 |1 001 4 _| 1001
w— Lo o0 0 1 1 00 0 1
\ 111 0 \1 0 0 0

Note that for a directed graph (right) the matrix is not symmetric.

Direct Az-j = 1 if there is a link pointing from node jand i

A;; = 0 if there is no link pointing from j to i.
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i i Complete Graph

The maximum number of links a network

of N nodes can have is: ;__ :[1;’ J: N =D

A graph with degree L=L,,,, is called a complete graph,
and its average degree is <k>=N-1

Most networks observed in real systems are sparse:

L << Lmax
or
<k> <<N-1.

Protein (S. Cerevisiae): N= 1,870; L=4,470 Lmax=107 <k>=2.39
Coauthorship (Math): N= 70,975; L=2 105 Lmnax=3 1010 <k>=3.9



Bipartite Graph

bipartite graph (or bigraph) is a graph whose nodes can be divided
into two disjoint sets U and V such that every link connects a node in Uto
one in V; thatis, U and V are independent sets.

U Vv

Projection V

Projection U

A Examples:

Hollywood actor network
B Collaboration networks
Disease network (diseasome)
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Human Disease Network

Disorder Class
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In many applications we need to study weighted networks, Human Disease Network
where each link (i, j) has a unique weight wij
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Paths

In networks physical distance is replaced by path length. A path is a route that runs along
the links of the network. A path’s length represents the number of links the path contains

. Apath between nodes i0 and in is an ordered list of n links P ={(i0, i1), (i1, i2), (i2, i3), ... ,(in-1, in)}. The length of this
path is n. The path shown in orange in (a) follows the route 1+2—+5—-7—-4—6, hence its lengthis n = 5.

. The shortest paths between nodes 1 and 7, or the distance d17, correspond to the path with the fewest number of
links that connect nodes 1 to 7. There can be multiple paths of the same length, as illustrated by the two paths shown in
orange and grey. The network diameter is the largest distance in the network, being dmax = 3 here.



Paths

The distance (shortest path, geodesic path) between two
nodes is defined as the number of edges along the shortest
path connecting them.

*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of
the arrows.

Thus in a digraph the distance from node Ato B (on an AB
path) is generally different from the distance from node B to A
(on a BCApath).



Shortest Path

The path with the shortest
length between two nodes
(distance).

Diameter

The longest shortest path in
a graph

Paths

l1—>4 =3



Average Path Length

liso +lis3 + 1ot
+ 155 +los3 +laat+
+lo 5+ 134 + 355+
l45)/10=1.6

The average of the shortest paths for
all pairs of nodes.

Paths

Average path length/distance, <d>, for a connected graph:

|

dy=—— ) d.
()=>" T,

max i, j#i

where dj; is the distance from node i to node |

In an undirected graph d;; =d;;, so we only need to count them once:

(@)=—— Y4,

max i,j>i



Paths

Eulerian Path Hamiltonian Path

A path that traverses each A path that visits each
link exactly once. node exactly once.



Breadth First Search

. Start at node 1, that we label with “0”.

. Find the nodes directly linked to i. Label them distance “1” and put them in a queue.

. Take the first node, labeled n, out of the queue (n = 1 in the first step). Find the unlabeled
nodes adjacent to it in the graph. Label them with n + 1 and put them in the queue.

. Repeat step 3 until you find the target node j or there are no more nodes in the queue.

. The distance between i and j is the label of j. If j does not have a label, then d;; = «.
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Breadth First Search

. Start at node 1, that we label with “0”.

. Find the nodes directly linked to i. Label them distance “1” and put them in a queue.

. Take the first node, labeled n, out of the queue (n = 1 in the first step). Find the unlabeled
nodes adjacent to it in the graph. Label them with n + 1 and put them in the queue.

. Repeat step 3 until you find the target node j or there are no more nodes in the queue.

. The distance between i and j is the label of j. If j does not have a label, then d;; = «.
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Connectivity in graphs

In an undirected network nodes i and j are connected if there is a path between them.
They are disconnected if such a path does not exist, in which case we have dij = <.

A network is connected if all pairs of nodes in the network are connected.
A network is disconnected if there is at least one pair with dij = o

A components a subset of nodes in a network, so that there is a path between any two
nodes that belong to the component, but one cannot add any more nodes to it that would

have the same property.

B
B
A
A Largest Component:
Giant Component
Cc
F
D ( Of. c
F
G F The rest: Isolates
G

Bridge: if we erase it, the graph becomes disconnected.

Disconnected graph in PN?



Connectivity in graphs

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements

being zero:

(a) ( 0 0 0 ()\

-0 00 0

0 0 0 0

000000 1

000001 1

0 0 0 I

\0 001110

(b)

Network Science: Graph Theory



Strongly connected directed graph: has a path from each node to
every other node and vice versa (e.g. AB path and BA path).

Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.

Connectivity in graphs

B OF
%k\oe



Clustering Coefficient

The clustering coefficient captures the degree to which the neighbours of a
given node link to each other. For a node i with degree ki the local clustering
coefficient is defined as

2L,

]

ki(ki—1)

Ci:

where Li represents the number of links between the ki neighbors of node i. Note that Ciis between 0 and 1:

«  Ci=0if none of the neighbors of node i link to each other.

- Ci=1if the neighbors of node i form a complete graph, i.e. they all link to each other.

- Ciis the probability that two neighbors of a node link to each other. Consequently C = 0.5 implies that there is a 50%
chance that two neighbors of a node are linked.

K XX



The degree of clustering of a whole network is captured by
the average clustering coefficient, <C)> , representing the average
of Ciover allnodesi=1, ..., N[12],

©=13c
=1

In line with the probabilistic interpretation <C) is the probability

that two neighbors of a randomly selected node link to each
other.

3XNumberOfTriangles
NumberOf ConnectedTriples

CA=

Connected triplet is an ordered set of three nodes ABC such that A connects to B and
B connects to C. For example, an A, B, C triangle is made of three triplets, ABC, BCA
and CAB. In contrast a chain of connected nodes A, B, C, in which B connects to A and
C, but A does not link to C, forms a single open triplet ABC. The factor three in the
numerator of (2.17) is due to the fact that each triangle is counted three times in the

triplet count.

Clustering Coefficient




The degree of clustering of a whole network is captured by Clustering Coefficient
the average clustering coefficient, <C)> , representing the average
of Ciover allnodesi=1, ..., N[12],

1 al °
(C) = N Z C;
=1
In line with the probabilistic interpretation <C) is the probability
that two neighbors of a randomly selected node link to each 2/3

other.

3XNumberOfTriangles
NumberOf ConnectedTriples

CA=

13
(C)= — =0.310
42

Connected triplet is an ordered set of three nodes ABC such that A connects to B and

B connects to C. For example, an A, B, C triangle is made of three triplets, ABC, BCA g i = D375
and CAB. In contrast a chain of connected nodes A, B, C, in which B connects to A and 8

C, but A does not link to C, forms a single open triplet ABC. The factor three in the

numerator is due to the fact that each triangle is counted three times in the triplet count.



Undirected

(0 1 1 O)
1 O 1 1
A =
Y 1 1 O O
0 1 0 0
Aii:O Aij:Aji
1 < 2L
L=— ) A. <k>=—
22 v N

Actor network, protein-protein interactions

Directed

(0 1 0 0
O 0 1 1
Al.. =
/ 1 O 0O 0
KO 0 0 O)
Azi — Aij iAﬂ
N
L= ZAU <k>=—
i,j=1

WWW. citation networks



Unweighted Weighted

(undirected) (undirected)
10 1 1 > 0 1 4
Ai' — Ai' =
/ 1 1 O O ] 0.5 1 O O
\O 1 O o0 ) L 0 4 O O )
A =0 A=A A; =0 A=A,

1~ 2L 1 & 51
L= 5 iélA,-j < k >= ~ L= 5 iélnonzero(Aij) < k >= ~

protein-protein interactions, www Call Graph, metabolic networks



Self-interactions Complete Graph

(undirected)

( \
» 1 10 (0 1 1 1)
A, = o A 1 0 1 1
1 1 0 O i<l 1 o 1
O 1 O 1
\ J (1 1 1 0
A, #0 A=A,
1 & N AiiZO Ai;ﬁj:l
) - A +> A ? _
2i,j—zl,‘:¢j ! % ! L:Lmax:N(N 1) <k>:N—1

Protein interaction network, www Actor network, protein-protein interactions



Summary

Degree distribution?

Cluster Coefficient for each node

Average path length and network
diameter




A protein-protein interaction network, where two proteins are
connected if there is experimental evidence that they can bind
to each other in the cell.
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Protein Protein Interaction Network

Undirected network

N=2,018 proteins as nodes
L=2,930 binding interactions as links.
Average degree <k>=2.90.

Not connected: 185 components
the largest (giant component) 1,647

nodes

Mean Cluster coefficient = 0.12
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Protein Protein Interaction Network

P« is the probability that a
node has degree k.

Nk = # nodes with degree k

Pk = Nk/N
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Protein Protein Interaction Network

d, =14

<d>=5.61



Random Network
Most networks we encounter do not have the comforting regularity of a crystal
lattice or the predictable radial architecture of a spider web, but it is not always
constructed by regularity.

Defining Random Networks

There are two definitions of a random network:

+  G(N, L) Model: N labeled nodes are connected with L randomly placed links. Erdés and Rényi used
this definition in their string of papers on random networks [2-9]

*  G(N, p) Model: Each pair of N labeled nodes is connected with probability p, a model introduced by
Gilbert.

Hence, the G(N, p) model fixes the probability p that two nodes are connected and the G(N, L)) model
fixes the total number of links L. While in the G(N, L) model the average degree of a node is simply <k> =
2L/N, other network characteristics are easier to calculate in the G(N, p) model. The G(N, p) model, is ease
to calculate key network characteristics, and in real networks the number of links rarely stays fixed.

To construct a random network we follow these steps:
.. Start with N isolated nodes.
. Select a node pair and generate a random number between 0 and 1. If the number exceeds p,
connect the selected node pair with a link, otherwise leave them disconnected.
Repeat step (2) for each of the N(N-1)/2 node pairs.

In summary the number of links in a random network varies between realizations. lts expected value is
determined by N and p. If we increase p a random network becomes denser: The average number of links
increase linearly from <L> = 0 to Lmax and the average degree of a node increases from <> = 0 to <k> = N-1.



Random Network

In a given realization of a random network some nodes gain numerous links, while
others acquire only a few or no links. These differences are captured by the degree
distribution, pk, which is the probability that a randomly chosen node has degree k.
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Three realizations of a random network
® o o ® ® o o ® ® oo ® generated with the same parameters p=1/6
and N=12. Despite the identical parameters, the
networks not only look different, but they have a
- * different number of links as well (L=10, 10, 8).
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Three realizations of a random network with p=0.03
and N=100. Several nodes have degree k=0, shown
as isolated nodes at the bottom.



Random

In a given realization of a random network some nodes gain numerous links, while others acquire only a few
or no links. These differences are captured by the degree distribution, pk, which is the probability that a

randomly chosen node has degree k.
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Network

The exact form of the degree distribution of a random network is the binomial distribution(left half). For N » <k>
the binomial is well approximated by a Poisson distribution (right half). As both formulas describe the same
distribution,they have the identical properties, but they are expressed in terms of different parameters: The binomial
distribution depends on p and N, while the Poisson distribution has only one parameter, <k>. It is this simplicity that

makes the Poisson form preferred in calculations.



Random Network: not for real life!

INTERNET ' SCIENCE ' . PROTEIN
R EP - COLLABORATION - [ INTERACTIONS
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The degree distribution of the (a) Internet, (b) science collaboration network, and (c) protein interaction network.

The green line corresponds to the Poisson prediction, obtained by measuring <k> for the real network and then plotting.
The significant deviation between the data and the Poisson fit indicates that the random network model underestimates the
size and the frequency of the high degree nodes, as well as the number of low degree nodes. Instead the random network
model predicts a larger number of nodes in the vicinity of <k> than seen in real networks.



Scale Free Network

The World Wide Web is a network whose nodes are documents and
the links are the uniform resource locators (URLs) that allow us to
“surf” with a click from one web document to the other. With an
estimated size of over one trillion documents (N=1012), the Web is the
largest network humanity has ever built. It exceeds in size even the
human brain (N = 1011 neurons).

The first map of the WWW obtained with the explicit goal of understanding
the structure of the network behind it was generated by Hawoong Jeong
at University of Notre Dame. He mapped out the nd.edu domain,
consisting of about 300,000 documents and 1.5 million links



Scale Free Network




Scale Free Network
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Vilfredo Pareto, a 19th century economist, noticed that in ltaly a few
wealthy individuals earned most of the money, while the majority of
the population earned rather small amounts. He connected this
disparity to the observation that incomes follow a power law,
representing the first known report of a power law distribution. His
finding entered the popular literature as the 80/20 rule: roughly 80
percent of money is earned by only 20 percent of the population. The
80/20 emerges in many areas

Low
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Scale Free Network

P (k) = kY
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Scale Free Network
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Scale Free Network

P (k) = kY
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H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)
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Scale Free Network
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Random Network

Random networks The ER model start with N nodes and connects each
pair of nodes with probability p. The node degree follow a Poisson
distribution, means that most modes have approximately the same number
of links. The clustering coefficient is independent of node’s degree. The
mean path length si proportional to the logarithm of network size [ =~ logV.

Ak)
Clk)
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Scale Free Network

Scale-free networks

Most nodes are poorly while a few are highly connected (Hubs). The
degree distribution approximates a power law: P(k) =~ k", where -y is the
degree exponent. The smaller the v, the more important is the role of the
Hubs. Most biological networks have 2 < v < 3. For v > 3, Hubs are
irrelevant and the network behaves like a random network. The mean
shortest path length is proportional to ~ (log(logn)) (ie. Much shorter
than Small World Property).
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Scale Free Network

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
of it, thus the average path length will be independent of the system size.

The average path length increases slower than logarithmically. In a random network all
nodes have comparable degree, thus most paths will have comparable length. In a
scale-free network the vast majority of the path go through the few high degree hubs,
reducing the distances between nodes.

Some key models produce y=3, so the resultis of particular importance for them. This
was first derived by Bollobas and collaborators for the network diameter in the context of
a dynamical model, but it holds for the average path length as well.

The second moment of the distribution is finite, thus in many ways the network behaves
as a random network. Hence the average path length follows the result that we derived
for the random network model eatier.



Scale Free Network

Scale-Free Model
=

Starting from three connected nodes (top left), in each image a new node (shown as an empty circle) is added
to the network. When deciding where to link, new nodes prefer to attach to the more connected nodes, a
process known as preferential attachment. Thanks to growth and preferential attachment, a rich-gets-richer
process is observed, which means that the highly connected nodes acquire more links than those that are less
connected, leading to the natural emergence of a few highly connected hubs. The node size, which was chosen
to be proportional to the node’s degree, illustrates the natural emergence of hubs as the largest nodes.



Scale Free Network



Scale Free Network

Assortative: Neutral: Disassortative:
hubs show a tendency to nodes connect to each Hubs tend to avoid
link to each other. other with the expected linking to each other.

random probabilities.

Quantifying degree correlations (three approaches):
—> full statistical description (Maslov and Sneppen, Science 2001)
—> degree correlation function (Pastor Satorras and Vespignani, PRL2001)
—> correlation coefficient (Newman, PRL 2002)




Social networks
are assortative

r>0: assortative network:
Hubs tend to connect to other hubs.

Network n r
Physics coauthorship (a) 52909 0.363
Biology coauthorship (a) 1520251 0.127
Mathematics coauthorship (b) 253339 0.120
Film actor collaborations (¢) 449913 0.208
Company directors (d) 7673 0.276
Internet (e) 10697 —(0.189
World-Wide Web (1) 269 504 —0.065
Protein interactions (g) 2115 —0.156
Neural network (h) 307 —0.163
Marine food web (i) 134 —0.247
Freshwater food web () 92 —0.276
Random graph (u) 0
Callaway et al. (v) 8/(1 + 28)
Barabasi and Albert (w) 0

r<0: disassortative network:
Hubs tend to connect to small nodes.

Scale Free Network

Biological,
technological
networks are
disassortative

Network Science: Degree Correlations wmarch 7, 2011



_ L Robustness
Robustness is a central question in biology and

medicine, helping us understand why some
mutations lead to diseases and others do not.

Networks play a key role in the robustness of biological, social and
technological systems. Indeed, a cell's robustness is encoded in
intricate regulatory, signaling and metabolic networks

The removal of a single node has only limited

impact on a network’s integrity. The removal of

several nodes, however, can break a network

into several isolated components. Obviously,

the more nodes we remove, the higher are the

chances that we damage a network, prompting

us to ask: How many nodes do we have to

delete to fragment a network into isolated
components? c.




0.75

8 0.5
A,
0.25
0
0 0.25 0.5 0.75 1
f =01 f=Ffc f =0.8
[ d L aad 80000 ee ® 0000 o000 @ @ @ 4
“3 ® L 4 (] o oo --I}“ @ e ® OO 8
8§oo S 00 0e oo § o g ée o
(&4 (<] ® O 000 oo @ (]
° [ 2 4 90 © (] &)
(&4 O 0000 ¢ 00000 O oo (<} @
[ d [ &4 0000000 O 00 088 o (-} e o
o4 & @ ® ®9® ¢ O 4
&b (oo d 00909 eeoe 9 088 ] [ 22 2] [e7e}
L 2 2 00838 ::ll OOOOOO ° Oo
00- 000 o9 o (<} 0008 Q 8000 @ (-
L 009 eeooee o0 000 @ @ o o o
o oo 00 [ 2 ] 09 oo el
® © 00 09 99000000 08 [¢) ] ® oo
L 1 .64 90 000 00000000 o o o0 (]
1 664 000 (ad o e o0 Q0 () o
&84 4 4 ° ° (o ol 4 8 (@) ]
o 00 o000 L 2 o0 (< 0 o0 0o (-} (<} o
O<f<f.: f=Ffc: f>fec:
There is a giant The giant component The lattice breaks into

component. vanishes. many tiny components.

Robustness

If f is small, the missing nodes do little damage to
the network. Increasing f, however, can isolate
chunks of nodes from the giant component.
Finally, for sufficiently large f the giant component
breaks into tiny disconnected components

This fragmentation process is not gradual, but it is
characterized by a critical threshold fc: For

any f< fc we continue to have a giant component.
Once f exceeds fc, the giant component vanishes.
This is illustrated by the f-dependence of Peo,
representing the probability that a node is part of
the giant component: P is nonzero under fc, but it
drops to zero as we approach fc.



Robustness

To illustrate the robustness of a scale-free network we start from the scale-free network. Next we randomly select
and remove nodes one-by-one. As the movie illustrates, despite the fact that we remove a significant fraction of
the nodes, the network refuses to break apart.



Robustness

Attacks -e

Random Failures -e-

Po (f)/P o (0)

0 0.25 0.5 f 0.75 1
ork Random Failures Random Failures Attack
(Real Network) (Randomized Network) (Real Network)
Internet 0.92 0.84 0.16
WWW 0.88 0.85 0.12
Power Grid 0.61 0.63 0.20
Mobile Phone Calls 0.78 0.68 0.20
Email 0.92 0.69 0.04
Science Collaboration 0.92 0.88 0.27
Actor Network 0.98 0.99 0.55
Citation Network 0.96 0.95 0.76

E. Coli Metabolism

Protein Interactions

The estimated fc for random node failures (second column) and attacks (fourth column) for ten reference networks



Robustness

ATTACK For small <k> the hub holds the network
Mt together. Once we remove this central hub the network
breaks apart. Hence the attack and error curves are

well separated, indicating that the network is robust to
random failures but fragile to attacks.
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ATTACK -e-

oo *For larger <k> a giant component emerges, that
exists even without the central hub. Hence while the
hub enhances the system’s robustness to random
failures, it is no longer essential for the network.

ATTACK -»-
RANDOM FAILURE -»

For even larger <k> the error and the attack curves
are indistinguishable, indicating \that the network's
response to attacks and random failures is
indistinguishable. In this case the network is well
connected even without its central hub.
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Communities

Belgium appears to be the model bicultural society: 59% of its citizens are Flemish, speaking
Dutch and 40% are Walloons who speak French.

N U S Y/ [/ Communities extracted from the call pattern of the consumers of the
\ | / largest Belgian mobile phone company. The network has about two
million mobile phone users. The nodes correspond to communities,
the size of each node being proportional to the number of individuals
in the corresponding community. The color of each community on a
red—green scale represents the language spoken in the particular
community, red for French and green for Dutch. Only communities of
more than 100 individuals are shown. The community that connects
the two main clusters consists of several smaller communities with
less obvious language separation, capturing the culturally mixed
Brussels, the country’s capital.

In network science we call a community a group of nodes that have a higher likelihood of connecting to each other than to
nodes from other communities.



Communities

Communities play a particularly important role in our
understanding of how specific biological functions are
encoded in cellular networks.

Communities play a particularly important role in understanding human diseases. Indeed, proteins
that are involved in the same disease tend to interact with each other. This finding inspired the
disease module hypothesis, stating that each disease can be linked to a well-defined neighborhood
of the cellular network.



The topologic overlap matr
the E. coli metabolism and
corresponding dendrogram
allows us to identify the
modules

et

x of

the, . B
that _— 1‘.559?_
i | ,j",,;gg"” i
T N

A — |
m @ammr fal; SEbRS ﬁ

Communities

The color of each node, capturing the
predominant biochemical class to which it

(9]

- %&"'-
0
T Y 005
AL : 065 I
BTk 075 [
b S 065 [
s 0.55 [
:f--‘iﬁﬂ i 0.45
8 | 0.5 I
ot s T 0.25
e i +
LT - 015 [
» 3 3 =
B 0.05 N
Carbonyarates [ g | Amino acids e | oo
” T 2IlE H
i CIEE 2slalilee (3l e e P £ | & W
5 HEH I HI I RN |
i SIE[E 0|8 |l s < B] € 2| =
5 i HEEE
1

belongs, indicates that different functional
classes are segregated in distinct network
neighborhoods. The highlighted region
selects the nodes that belong to the

)

i
=

pyrimidine metabolism, one of the predicted
communities.

=

[
¢ & e 3 e ¢
@ E T o o 2 o = 2 o o $ o o @ o
= £ = = - =} = =} =} = £ =
§ & § & 5 ¢ & 85 § & E § B E 8 § = 8§ 3
L1 5 : :
= C) = -1
e I i
8 ]
D L-glutamine
. 6355
|23 <ccmP, |2, 3 cumP) [ carbamoyl_phosphate |
L-3-amino-
400 EREN TS 32 2-melhy\bulan0&la|
3 oup 5 uwp| [-ca :| 3816
i = 35413 y 27404
cylidine - uridine | S-dihyroorotate PO ey 75
o cosy | van 1742 27446 | deaxyaytidine | e
3345 | [5, g-dinydrothymine|
[orotate A |
— = deoxyuridine .
2423 EA210 — N I"“ -
c!mm r WEe. LR 1418 1 G|
7\— Lh1g aroﬁdine_sP| EXES] sy |2 fsm
sasfie s 3613 2423
/ ] 11 2TANE -
vy 5 2744 ¥ e PR
E!F uracil | - e ——fuod] lggrj ——>{aUnA<—ur  [shymidine|
T4 s 2749
— = pr— e ST T U B T
uvi:linl_EP E‘ ﬁdlhmulxi 429 R, TMFJ T'_“
35112 | ﬂluwm’m 27,“! L’.T.ﬁ.\]
== I i
A oxidized_glutaredoxin B
‘beta-alanine §P-alpha-D-ribose- ELRL 7 s



Communities
Maximum Cliques: In graph theoretic terms this means that a community is a complete subgraph, or a clique.

Strong and Weak Communities

To relax the rigidity of cliques, consider a connected subgraph C of NC nodes in a network. The internal degree Kkiint of
node i is the number of links that connect i to other nodes in C. The external degree kiextis the number of links that
connect i to the rest of the network. If kiext=0, each neighbor of i is within C, hence C is a good community for node i.

If kiint=0, then node i should be assigned to a different community. These definitions allow us to distinguish two kinds of
communities

strong community: weak community:
each node has more links within the the total internal degree of the subgraph
community than with the rest of the graph. exceeds its total external degree,
kl_lnt(C) > kiext(c) 2 kl-in(C) > 2 kiom(C)
ieC ieC
a. b. c.
A clique correspond A strong: A weak
s to a complete community community

subgraph.



Communities

To uncover the community structure of large real networks we need algorithms whose running time grows
polynomially with N. Hierarchical clustering.

The starting point of hierarchical clustering is a similarity matrix, whose elements xij indicate the distance
of node i from node j. In community identification the similarity is extracted from the relative position of
nodes i and j within the network.

Step 1: Define the Similarity Matrix.

» high for node pairs that likely belong to the same community;

» low for those that likely belong to different communities.

* Nodes that connect directly to each other and/or share multiple neighbors are
more likely to belong to the same dense local neighborhood, hence their
should be large.

Topological overlap matrix:

Jn(iLj): number of common neighbors of node i and j;
(+1) if there is a direct link between i and j;



Communities

O e

coocoo
AL o
333

J=1if nodes and have the same neighbors (A&B)
J=0if do not have common neighbors, nor do they link to each other (A&E)

Members of the same dense local neighborhood have high JN(i,j), like nodes H,
l, J, K



Communities

Step 2: Decide Group Similarity.
e groups are merged based on their mutual similarity:
single, complete and average cluster similarity

(a) (b)
2
o
() (<) G H
O
|H I J K

_ TE[2.22 275 3.08 346 _ ,
Tii = |68 3.3%8 340 3.97 Single Linkage: 12 = 1.59

G| 159 231 234 288

(c)

Complete Linkage: 12 = 3.97 Average Linkage: x12 = 2.84



Communities

Step 3: Apply Hierarchical Clustering

» Assign each node to a community of its own and evaluate for all node
pairs. The initial similarities between these “communities” are simply the
node similarities.

* Find the community pair with the highest similarity and merge them to
form a single community.

« Calculate the similarity between the new community and all other
communities.

* Repeat from Step 2 until all nodes are merged into a single community.

Step 4: Build Dendrogram.
» describes the precise order in which the nodes are assigned to communities.



Communities
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0.50 .
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0.10

For example, the dendrogram of Figure 9.13B tells us that the algorithm first merged nodes A and B, K
and J and E and F, as each pair has . Next node C was added to the (A, B) community; | to (K, J) and G
to (E, F). Eventually this procedure correctly identified the three obvious communities (ABC, EFG, and
HIJK). The dendrogram also captures the fact that the EFG and the HIUK communities are closer to each
other that to the ABC module.



Communities

E—

ML

Ambiguity in Hierarchical Clustering

Hierarchical clustering does not tell us where to cut a dendrogram. Indeed, depending on where we make the cut
in the dendrogram of Image 9.9a, we obtain (b) two, (c) three or (d) four communities. While for a small network

we can visually decide which cut captures best the underlying community structure, it is impossible to do so in
larger networks.



Communities

To generalize these ideas to a full network consider the complete partition that breaks the network into nc communities. To
see if the local link density of the subgraphs defined by this partition differs from the expected density in a randomly wired
network, we define the partition’s modularity by summing (9.11) over all nc communities

Higher Modularity Implies Better Partition

The higher is M for a partition, the better is the corresponding community structure. Indeed, in Image 9.16a the partition with
the maximum modularity (M=0.41) accurately captures the two obvious communities. A partition with a lower modularity
clearly deviates from these communities (Image 9.16b). Note that the modularity of a partition cannot exceed one [31,32].

Zero and Negative Modularity
By taking the whole network as a single community we obtain M=0, as in this case the two terms in the parenthesis of (9.12)
are equal (Image 9.16c¢). If each node belongs to a separate community, we have Lc=0 and the sum (9.12) has nc negative

terms, hence M is negative (Image 9.16d).

OPTIMAL PARTITION b. SUBOPTIMAL PARTITION
=0.41 ; M =0 .22 ;
c. SINGLE COMMUNITY d. NEGATIVE MODULARITY

M =0 M= -0.12




Segal’s paper

Module networks: identifying requlatory modules and their
condition-specific requlators form gene expression data

e The complex functions of a living cell are carried out through the
concerted activity of many genes and gene products. This activity is
often coordinated by the organization of the genome into regulatory
modules, or sets of coregulated genes that share a common function.

e Identifying this organization is crucial for understanding cellular
responses to internal and external signals.

e Genome-wide expression profiles

Goal Module networks procedure; a method based on probabilistic
graphical models for inferring regulatory modules from gene expression
data.
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Segal’s paper

Assumption The regulators are themselves transcriptionally regulated, so
that their expression profiles provide information about their activity level.

Procedure

- lﬁegulamf J-
Pre-processing

selection Data selection
l Candidate reguiators I | Expression data |
"""""""""""""""""" Clustering ~  —=——=—
Regulation Gene partition |[€——— [ re—

program leaming
Gene

reassigrment to

modules

v

1
|
! Module network

orocedure | Functional modules |——
[0 e . o o e S L e i S S e . 5 5 5 S > € . S > - > > e bk

Modules Mofif Annotation

& T search analysis

S .

= h? <a! Graphic presentation |~

g ol
.

2 i v

2 i I Hypotheses & validation |

< (i

Canaitions
Posi-procassing

55



Segal’s paper

The algorithm searches simultaneously for a partition of genes into modules
and for a regulation program for each module that explains the expression
behavior of genes in the module. The regulation program of a module.
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Segal’s paper

Respiration module Hap4 TF module’s top regulator, indeed Hap4-DNA
biding sequence motif is present in 29 of 55 genes in the module.

Oxid. Phoaphorylation (26, 5 < 1079
Xerobic Respiration (12,2 107%)

Mitochondrion (31, 7« 10°*)

"Rk { RN DR

reA00Y
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Regulatory components
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Single gene Small genetic circuit Mid-size genetic network Large genetic network
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