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A biological system is a complex system

In Systems Biology mathematical and computational modeling is exploited to
help scientists in the study of biological systems



Modeling = formal knowledge representation



Modelling = formal knowledge representation



Different biological systems...



Different biological systems...



Different biological systems...



Different biological systems...



Different biological systems...



Different biological systems...



... require different modeling approaches



Different modeling approaches:



Data requirements VS Computational demand:
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Petri Nets
Petri nets are graphical modeling 
formalisms which are becoming quite 
popular to build models of biological 
systems. 

They can be used to represent in a 
simple and intuitive manner many 
important features of biological  system  
easily to understand also by non-
mathematicians and non-computer 
scientists. 



q A marking M is an assignment of tokens to places
q A transition is enabled if at least one token exists in each of its input places, and no 

tokens exist in its inhibition places 
q A transition may fire if it is enabled
q A Petri nets executes by firing transitions

Ø A transition fires by removing tokens from each of its input places and 
depositing tokens in each of its output places

q Dynamic properties of Petri nets result from their execution controlled by the 
position and movement of tokens
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Petri Nets: Definition, Notation and Rules
Petri nets are bipartited directed graphs

NODES

ARCS

A PETRI NET

Places
Transitions

Input
Output

Inhibition





Typical basic structures



Typical basic structures
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Typical basic structures



Typical basic structures
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Petri Nets:  Formal Definition 
A marked Petri net is formally defined by the following tuple

PN  =  (P, T, F, W, M0 )
where
P = (p1, p2, ..., pP) is the set of places
T = (t1, t2, ..., tT) is the set of transitions
F= (P → T)&(T → P) is the set of arcs
W : f(t,p) is a weight function
M0 = (m01, m02, ..., m0P ) is the initial marking

Combining the information provided by the flow relations and by the 
weight function, we obtain the Incidence Matrix

with cpt = cpt
+ +  cpt

- =  w(t,p) - w(p,t)

p
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e
s

transitions

C =          cpt



Petri net model:

Set of places:        P = ?
Set of transitions:     T = ?
Incidence matrix:

Initial marking:          M0 = ?
27

A simple example: Michaelis-Menten kinetics

E       ?     ?     ?    
S       ?     ?     ?
ES   ?        ?         ?
P       ?      ?     ? 

C =  
K1    K-1     K 



Petri net model:

Set of places:        P = (E, S, ES, P)
Set of transitions:     T = (K1, K-1, K)
Incidence matrix:

Initial marking:          M0 = (5, 10, 0, 0)
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A simple example: Michaelis-Menten kinetics

E       -1    +1    +1    
S       -1    +1
ES   +1     -1     -1
P                     +1

C =  
K1    K-1     K 
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Petri Nets:  Basic Definitions 
Set of markings reachable from M0

Set of transitions enabled in marking M

M’ is reachable from M by firing a sequence ¾ of 
transitions

a transitions tr is enabled in marking M iff



K

E       -1    +1    +1    
S       -1    +1
ES    +1  -1   -1
P                    +1

C   =  

K1    K-1     K 

(3,5,0,0)+(-1,-1,+1,0) = (2,4,1,0)

Petri net model:

Reachability graph :
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A simple example: Michaelis-Menten kinetics

3 5 0 0

3 4 0 1

3 3 0 2

3 2 0 3

3 1 0 4

3 0 0 5

2 4 1 0

2 3 1 1

2 2 1 2

2 1 1 3

2 0 1 4

1 3 2 0

1 2 2 1

1 1 2 2

1 0 2 3

0 2 3 0

0 1 3 1

0 0 3 2
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K-1
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K
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K-1
K
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(2,3,1,1)+(+1,0,-1,+1) = (3,3,0,2) 
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Petri Nets: Structural  and Behavioural Properties

Structural properties of Petri nets are obtained from the incidence 
matrix, independently of the initial marking

Behavioural properties of Petri nets depend on the initial marking and 
are obtained from the reachability graph (finite case) of the net or from 
the covering tree (infinite case)



A Petri net is  strictly conservative (or strictly invariant) iff

A Petri net is conservative (or P invariant) iff

The integer solution Y of the equation

is called a P Semiflow     
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Petri Nets: P Semiflows
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Petri Nets: Boundedness
A place pi is bounded (k-bounded) iff

A Petri net is bounded (k-bounded) iff

A net covered by P-semiflows
Is bounded
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Petri Nets: T Semiflows
The integer solution X of the equation

is called a T-Semiflow

A net covered by T-semiflows
may have home states

A net with home states is covered by T-semiflows



Petri net model:

Set of places:        P = (E, S, ES, P)
Set of transitions:     T = (K1, K-1, K)
Incidence matrix:

Initial marking:          M0 = (3, 5, 0, 0)
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A simple example: Michaelis-Menten kinetics

E       -1    +1    +1    
S       -1    +1
ES   +1     -1     -1
P                     +1

C =  
K1    K-1     K 



E        -1 +1 +1
S          -1 +1            
ES     +1 -1 -1                  
P                      +1 

C   =  

K1  K-1  K  
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A simple example: Michaelis-Menten kinetics

Petri net model:

P semiflows  (YC = 0):

T semiflows  (CX = 0):

y  =  ( 1, 0, 1, 0 )
y  =  ( 0, 1, 1, 1 )

x  =  ( 1, 1, 0 )

Incidence matrix:

The net is covered by P-semiflows, thus is bounded

The net is not covered by T-semiflows, thus is not live
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Stochastic (Exponential) Petri Nets
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Stochastic (Exponential) Petri Nets

n The delay of a transition is a random variable

n Timed Transition PN with atomic firing and race policy in which 
transition delays are random variables exponentially distributed 
are called Stochastic Petri Nets (SPN)

n SPN is the name chosen by Molloy in 1982, but a more adequate 
one is Exponential Petri Nets
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Exponential distributions

n The exponential pdf is 

it is the only continous distribution for which the memoryless property 
holds

It is used to describe a  process in which 
events occur continuously and independently at 
a constant average rate  λ
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Why Exponential distributions ?

n If X is the random variable for t1 and 
Y is the random variable for t2

if the race policy is assumed,   then
the random variable that describes: 

how long the system stays in marking 1•p1

is defined as  Z = min(X,Y)
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Markov chains

n Continuous Time Markov chain – CTMC

is a simple type of stochastic process with discrete state space

n Sojourn times in states are exponentially distributed 
random variables 

and
n future evolution only depends on the present state 

(there is no need to keep history information)
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Markov chains

n CTMC can be described as direct graph with labeled transitions; 
the value of the label describes the rate associated with that 
change of state

State transition rate diagram Infinitesimal generator 
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Markov chains

n The solution of the CTMC at time t amounts to the computation of 
the solution of a set of differential equations called forward 
Chapman-Kolmogorov equations  (as many equations as there 
are states in the CTMC) 

n The solution is represented by the state probability vector at time t 

Matrix form where Q is the infinitesimal generator

Variation of probability in 
the interval
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Markov chains  

Chapman-Kolmogorov equations
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ODE solution in a nutshell

It is not always possible to evaluate indefinite integrals

To cope with this numerical methods can be used.

Euler method:

Its  basic idea is to use a known point as a "starter," and 
then use the tangent line through this known point to jump to 
a new point



In 1977 Daniel T. Gillespie 
developed a theory based on 
the hypothesis that collisions
among molecules in constant 
volumes and temperatures are 
random

He used this theory to show  that the kinetics of the 
chemical reactions deriving from these collisions 
corresponds to an underlying stochastic process that is a 
Continuous Time Markov Chain (CTMC).

Relevance of CTMCs in biological models



SPN definition

n An SPN is defined as a 7-tuple
SPN= (PN, R(.))

where
PN = (P, T, F, W, M0) is the P/T system underlying the SPN
n Transitions have an exponentially distributed delay
n R: T → Real  assigns a rate to each transition 

(inverse of the mean firing time)



SPN definition

n The stochastic process underlying an SPN is a CTMC in which

¨ the state transition rate diagram is isomorphic to the 
reachability graph

¨ the transition labels are computed from the R() functions of the 
transitions enabled in a state



SPN w/o synchronization and choices



SPN with choices



SPN to CTMC

n When the model is very complex (a huge number of places and 
tokens) → we have the state space explosion

Then, the Chapman-Kolmogorov equations cannot be written since 
we have too much equations (one for each state)

n To deal with this we approximate the stochastic process as a 
deterministic one in which each system quantity is defined by an 
ODE.   



Simple example – Deterministic approximation

4 ODEs using Deterministic approximation vs 51 ODEs using Chapman-
Kolmogorov equations
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Simple example – ODE Analysis
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0

1

More complex example – CTMC Analysis



Summary
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SPN with (self) concurrency

n If there can be more then one token in the initial marking then it is 
necessary to consider:

¨ transitions that are enabled in the same state but that are not 
in conflict

¨ transitions with k- and infinite server semantics
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CTMC analysis (1)

n Let   {X(t),t ¸0}  to be the mathematical representation of the CTMC.
n Denote with  pij(t) he probability of finding the CTMC in state  sj at time  

z+t, given that it was in state si at time z, independently of z
n In matrix notation we define

n Using the Chapman-Kolmogorov equations it is possible to show that

n From which we obtain



March 8-th 2011, Torino - Italy 60

CTMC analysis (2)

n Let 

be the probability of finding the CTMC in state sj at time t, and 

be the initial distribution, we have

which becomes

n This is also the solution of the following differential equation

n that in detailed form is
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CTMC solution – finite state space

n Transient 

Ø Direct  computation of Qk is numerically unstable
Ø There are methods (e.g., uniformization) for efficient and effective 

computation of the result

n Steady state
Ø If the CTMC is ergodic then a limit exist for the state probability

Ø In this case the result is obtained from  the solution of a system of 
linear equations


