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A biological system is a complex system
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In Systems Biology mathematical and computational modeling is exploited to
help scientists in the study of biological systems
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Modeling = formal knowledge representation
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MODEL VALIDATION = CONFIDENCE INCREASE



Different biological systems...
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Different biological systems...
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Different biological systems...

Protein-protein
interaction network
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Different biological systems...

N o Gene regu‘lat?ry nﬁtwork
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Different biological systems...
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Different biological systems...
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.. require different modeling approaches

@ interaction-based approaches

» protein-protein interaction network;
» gene regulatory network.

based on graph theory — topological analysis.

e constraint-based approaches
» metabolic network.

based on linear algebra and optimization with linear programming — Flux
balance analysis.

@ mechanism-based approaches

» metabolic pathways;
» signal transduction pathways;
» cell population.

based ordinary/stochastic differential equations, Monte-Carlo simulation
...— dynamic behaviour analysis.
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Different modeling approaches:

(a) Interaction-based (b) Constraint-based (c) Mechanism-based
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Data requirements VS Computational demand:

Data Requirements

CONSTRAINT-BASED I

Computational Demand

Tenazinha and Vinga IEEE Trans Comp Biol Bioinf 8:4, 2011




Petri Nets

Petri nets are graphical modeling
formalisms which are becoming quite
popular to build models of biological
systems.

They can be used to represent in a
simple and intuitive manner many
important features of biological system
easily to understand also by non-
mathematicians and non-computer
scientists.
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Petri Nets: Definition, Notation and Rules
Petri nets are bipartited directed graphs

Places O
NODES Transitions 1
Input
ARCS Output
Inhibition
A PETRINET O(ﬂ
H—-eo—1

a | A marking M is an assignment of tokens to Elaces |

0 [ A transition is enabled if at least one token exists in each of its input places, and n¢
tokens exist in its inhibition places )

O A transition may fire if it is enabled
O | A Petri nets executes by firing transitions
» Atransition fires by removing tokens from each of its input places and

\ depositing tokens in each of its output places y. ]

N\

0 | Dynamic properties of Petri nets result from their execution controlled by the
\pasition and movement of tokens

15



metabolic networks
signal transduction networks
gene regulatory networks

transitions

-> (reversible, stoichiometric, enzyme-catalyzed) chemical reactions,
-> conversions/transport of metabolites, proteins, . ..

-> complexations/decomplexations, de-/phosphorylations, . . .

places
-> (primary, secondary) chemical compounds,
-> (various states of) proteins, protein complex, genes, . ..

tokens
-> molecules, moles, . . .

-> concentration levels, gene expression levels, . . .
e.g., high/low = present/not present, or any finite integer number




Typical basic structures

A-->B+C A+B->C
A --> B, A -->C,
A->C B-->C

E

A<-->B
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Typical basic structures
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Typical basic structures
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Typical basic structures
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metabolic networks
-> substance flows

signal transduction
networks

-> signal flows

el e2 e3
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metabolic networks

el e2
-> substance flows

e3

—@®—_ 00— 10— 1—@—I

INPUT
COMPOUND

signal transduction

networks INPUT

-> signal flows SIGNAL

H‘_. r1

(—-

OUTPUT
COMPOUND

r2
OUTPUT

SIGNAL

O—1L—~0—1

-> OPEN / CLOSED SYSTEMS
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Petri Nets: Formal Definition

A marked Petri net is formally defined by the following tuple
PN = (R T, F W, M,)

where

P=(p,, Py ..., Pp) is the set of places
T=(t,t, .., t) is the set of transitions
F=(P— T)&(T — P) s the set of arcs

W:f(tp) is a weight function

M, =(my, my, ..., myp) is the initial marking

Combining the information provided by the flow relations and by the

weight function, we obtain the Incidence Matrix
transitions

C = Cp

p

»w ® O 0 —T

with ¢, = ¢, + ¢,x = w(tp) - w(p,t) 26
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A simple example: Michaelis-Menten kinetics

Petri net model:

Set of places:
Set of transitions: Tr=7
Incidence matrix: K1 KA K

I
mw
(0))]

N ) Y

Initial marking: M,=7?
27
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A simple example: Michaelis-Menten kinetics

Petri net model:

Set of places: P=(E, S, ES, P)
Set of transitions: T =(K1, K-1, K)

Incidence matrix: K1 K1 K
E | -1 +1 +1

C — S 1 +1
= ES|+1 -1 -1
P +1
Initial marking: M,= (5,10, 0, 0)

28
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Petri Nets: Basic Definitions

RS(Moy) Set of markings reachable from M,

E(M) Set of transitions enabled in marking M

M — M’ M’ is reachable from M by firing a sequence % of
transitions

a transitions ¢, is enabled in marking M iff

M > (G

tr T

MM =M -G + G = M

29



A simple example: Michaelis-Menten kinetics

Petri net model:

Reachability graph :

K1 K1 K

+1
+1

M+ [C])" = M
(3,5,0,0)+(FIEE0) = (2,4.1,0)
(2,3,1,1)+(FOEED - (3.3.0,2)
E(2,3,1,1) =

E(3,3,0,2) = {K:}

30
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Petri Nets: Structural and Behavioural Properties

Structural properties of Petri nets are obtained from the incidence
matrix, independently of the initial marking

Behavioural properties of Petri nets depend on the initial marking and
are obtained from the reachability graph (finite case) of the net or from
the covering tree (infinite case)

31
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Petri Nets: P Semiflows

A Petri net is strictly conservative (or strictly invariant) iff
P

P
Z mp, = Z mop, VM € RS(Moy)
p=1

p=1

A Petri net is conservative (or P invariant) iff

1Y = (y1, y2, ..., yp) > 0 such that

P P
Z YpMyp = Z YpMop VM € RS(M0>
p=1 p=1

The integer solution Y of the equation

is called a P Semiflow
YC

|
o

32
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Petri Nets: Boundedness
A place p; is bounded (k-bounded) iff

VM € RS(Mo), 3k : mi< k

A Petri net is bounded (k-bounded) iff

dk @ (Vp, € P : is k— bounded )

A net covered by P-semiflows
Is bounded

33
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Petri Nets: T Semiflows

The integer solution X of the equation
CX =0
is called a T-Semiflow

A net covered by T-semiflows
may have home states

A net with home states is covered by T-semiflows

34
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A simple example: Michaelis-Menten kinetics

Petri net model:

Set of places: P=(E, S, ES, P)
Set of transitions: T =(K1, K-1, K)
Incidence matrix: K1 K1 K
E | -1 +1 +1
C — S | -1 +
- ES| +1 -1 -1
P +1
Initial marking: M,=(3, 5, 0, 0)

35
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A simple example: Michaelis-Menten kinetics

Petri net model: E G

Incidence matrix:

P semiflows (YC = 0): y = (o[A[][7)
y = (Llofr]o)

The net is covered by P-semiflows, thus is bounded

T semiflows (CX = 0): x = ([1)[7]0)

The net is not covered by T-semiflows, thus is not live

17



How many tokens can reside at most in a given place ?
-> (0, 1, k, 00) -> BOUNDEDNESS

How often can a transition fire ?
-> (0-times, n-times, oo-times) -> LIVENESS

How often can a system state be reached ?

-> never -> UNREACHABLE -> SAFETY PROPERTIES
-> n-times -> REPRODUCIBLE
-> oo-times -> REVERSIBILITY

Are there behavourally invariant net structures ?
-> token conservation -> P - INVARIANTS
-> token distribution reproduction -> T - INVARIANTS



static analyses -> no state space construction

-> structural properties (graph theory)

-> P/ T -invariants (linear algebra)

dynamic analyses -> total/ partial state space construction

-> analysis of general behavioural system properties,
e.g. boundedness, liveness, reversibility, . . .

-> model checking of special behavioural system properties,
e.g. reachability of a given (sub-) system state (with constaints),
reproducability of a given (sub-) system state (with constraints)




Stochastic (Exponential) Petri Nets

39
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Stochastic (Exponential) Petri Nets

m The delay of a transition is a random variable

m Timed Transition PN with atomic firing and race policy in which
transition delays are random variables exponentially distributed
are called Stochastic Petri Nets (SPN)

m SPN is the name chosen by Molloy in 1982, but a more adequate
one is Exponential Petri Nets

40



Exponential distributions

m The exponential pdf is

Fx(z)=Xe ™ (z 2> 0)

it is the only continous distribution for which the memoryless property

holds

w &

AgT

/

AX

P{X >z+alX > a} =P{X >z}

It is used to describe a process in which
events occur continuously and independently at

-

\\\\ a constant average rate A

X

41



Why Exponential distributions ?

m If Xis the random variable for t, and ad
Y is the random variable for £,
[l"Tl t];f]
if the race policy is assumed, then pzo P,

the random variable that describes:

how long the system stays in marking 1+p,

is defined as Z = min(XY)

42
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Markov chains

m Continuous Time Markov chain — CTMC
is a simple type of stochastic process with discrete state space

m Sojourn times in states are exponentially distributed
random variables

and
m future evolution only depends on the present state
(there is no need to keep history information)

43
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Markov chains

m CTMC can be described as direct graph with labeled transitions;
the value of the label describes the rate associated with that
change of state

A

———

—

u

State transition rate diagram Infinitesimal generator

44
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Markov chains

m The solution of the CTMC at time t amounts to the computation of
the solution of a set of differential equations called forward
Chapman-Kolmogorov equations (as many equations as there
are states in the CTMC)

Variation of probability in (177, ( t )

i T Z mi(t)qij — 7 (t)q;j
1% ]
dm(t
IE ) — W([)Q Matrix form where Q is the infinitesimal generator
C

m The solution is represented by the state probability vector at time t

45
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Markov chains
4 A A
=10 2]
pnoo—p
EH’ 7(0) = (1,0)

meaning that the system is in state 0 at time 0 with probability 1.

Chapman-Kolmogorov equations

d(mo)(t)
dt

d(ﬂ;t)(t) = —p*mi(t) + X% mo(t)

7T()(O) = 1
7T1(O) = 0

= —Axmo(t) + p*mi(t)

46



ODE solution in a nutshell

d z
%=F($) > y:/ F(A)dx+C
dy = F(z) dx

It is not always possible to evaluate indefinite integrals

To cope with this numerical methods can be used.

Euler method:

Its basic idea is to use a known point as a "starter," and A A
then use the tangent line through this known point to jump to A 3 A4
a new point 2
A;
Yn+1 = Yn + hf(tna yn)-
Ag

47



Relevance of CTMCs in biological models

Daniel T. Gillespie
developed a theory based on

the hypothesis that /MOLECULE 2

among molecules in constant @

volumes and temperatures are
random

He used this theory to show that the kinetics of the

chemical reactions deriving from these collisions

corresponds to an underlying stochastic process that is a
(CTMC).



SPN definition

m An SPN is defined as a 7-tuple
SPN= (PN, R(.))

where
PN=(P, T, F, W, M,) is the P/T system underlying the SPN
m Transitions have an exponentially distributed delay
m R: T — Real assigns a rate to each transition
(inverse of the mean firing time)
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SPN definition

m The stochastic process underlying an SPN is a CTMC in which

[0 the state transition rate diagram is isomorphic to the
reachability graph

O the transition labels are computed from the R() functions of the
transitions enabled in a state
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SPN w/o synchronization and choices

g 2
A 1T 7
L OO0 >£ | /
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SPN with choices

n [ ]




SPN to CTMC

= When the model is very complex (a huge number of places and
tokens) — we have the state space explosion

Then, the Chapman-Kolmogorov equations cannot be written since
we have too much equations (one for each state)

« o deal with this we approximate the stochastic process as a
deterministic one in which each system quantity is defined by an
ODE.

d I ~y —
m(ll)t(y) - Z C(p'ivtj)T(tj) H m.ph(y)l(/ (Pn,t;)|
lv
§:C(pists)#0 h:C~ (pn.t;)#0
mpz' (O) — ﬂlpi .0

where v is time, ¢; the transition ith and m,, number of tokens/molecules in p;
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Simple example — Deterministic approximation

zdet((;) = —kimg(t)ms() +k_1mpes(t) + kmgs
dmdS; N —kimg(t)ms(t) + k—1mps(t)

dmgf — klmE(t)ms(t) — k—lmES(t) — kmgs
m(ﬁ(t) — kmEs(t)

4 ODEs using Deterministic approximation vs 51 ODEs using Chapman-
Kolmogorov equations
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Simple example — ODE Analysis

Zmﬁ(z) = —kimp()ms(t) + k—1mes(t) + kmes

dmft( zt) = —kimp(t)ms(t) + k-1mps(t)

dmgi(gt) = kimge(t)ms(t) —k_1mps(t) — kmps
0 Cﬁ = kmpgs(t)

55
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More complex example — CTMC Analysis

56



Summary

representation of bionetworks by Petri nets
-> partial order representation

-> formal semantics

-> unifying view

purposes
-> animation

-> model validation against consistency criteria
-> qualitative / quantitative behaviour prediction

step-wise model development
-> qualitative model

-> discrete quantitative model

-> continuous quantitative model

->

[
V

1
V

->

->

better comprehension
sound analysis techniques

to experience the model
to increase confidence

experiment design,
new insights

discrete Petri nets
stochastic Petri nets

continuous Petri nets = ODEs
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SPN with (self) concurrency

m |[f there can be more then one token in the initial marking then it is
necessary to consider:

1 transitions that are enabled in the same state but that are not
in conflict

1 transitions with k- and infinite server semantics

March 8-th 2011, Torino - Italy 58



CTMC analysis (1)

m Let {X(i),t, 0} to be the mathematical representation of the CTMC.

m Denote with p;(t) he probability of finding the CTMC in state s; attime
z+t, given that it was in state s; at time z, independently of z

m |n matrix notation we define
H(t) = [pi; ()]
m Using the Chapman-Kolmogorov equations it is possible to show that

dH(t)
dt

= H(t) Q

m From which we obtain

H(t) = e%*

March 8-th 2011, Torino - Italy 59



CTMC analysis (2)

m Let A
wi(t) = Pr{X(t) =3} forall s; €8S
be the probability of finding the CTMC in state s; at time t, and
7;(0) = Pr{X(0) = j}

for all s; € S
be the initial distribution, we have

m(t) = w(0)H(t)
which becomes

m(t) = 7(0)eX*

m This is also the solution of the following differential equation

dm(t)
= t
- = = m(1)Q
m that in detailed form is
dm;(t
% = qj;mi(t) + g Qi Tk (1)
k#j
March 8-th 2011, Torino - Italy
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CTMC solution — finite state space

m [ransient

k=0

» Direct computation of Q% is numerically unstable

» There are methods (e.g., uniformization) for efficient and effective
computation of the result

m Steady state
» If the CTMC is ergodic then a limit exist for the state probability

m = lim 7w(¢t)
t— oo

> In this case the result is obtained from the solution of a system of
linear equations

0 = 7Q

Aprile - Maggio, 2010 61



