
Data)structure)

Illumina)fastq)

fastq)format)

•  Each)read)is)represented)by)four)lines:)
•  '@',)followed)by)read)ID)
•  Sequence)
•  '+',)op@onally)followed)by)repeated)read)ID)
•  quality)string:)
– same)length)as)sequence,)each)character)encodes)
the)base%call)quality)of)one)base)

FASTQ:)Phred)base%call)quali@es)

•  If)p)is)the)probability)that)the)base)call)is)wrong,)the)
Phred)score)is:)

•  Q=)—10)log10p)
•  The)score)is)wriQen)with)the)character)whose)ASCII)
code)is)Q)+33)(Sanger)Ins@tute)standard).)

fastq)format)

Fastq)QC)

•  Before)star@ng)a)RNA%seq)analysis)it)is)beQer)
to)have)a)look)at)the)overall)quality)of)raw)
data.)

•  oneChannelGUI)has)an)interface)to)FastQC)a)
java)tool)that)allows)quality)controls)at)the)
level)of)various)type)of)sequencing)files.)

FastQC)in)basespace)

FastQC)in)
oneChannelGUI)

SAM File format

1.4 The alignment section: mandatory fields

In the SAM format, each alignment line typically represents the linear alignment of a segment. Each
line has 11 mandatory fields. These fields always appear in the same order and must be present, but
their values can be ‘0’ or ‘*’ (depending on the field) if the corresponding information is unavailable.
The following table gives an overview of the mandatory fields in the SAM format:

Col Field Type Regexp/Range Brief description

1 QNAME String [!-?A-~]{1,255} Query template NAME
2 FLAG Int [0,216-1] bitwise FLAG
3 RNAME String *|[!-()+-<>-~][!-~]* Reference sequence NAME
4 POS Int [0,231-1] 1-based leftmost mapping POSition
5 MAPQ Int [0,28-1] MAPping Quality
6 CIGAR String *|([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT String *|=|[!-()+-<>-~][!-~]* Ref. name of the mate/next read
8 PNEXT Int [0,231-1] Position of the mate/next read
9 TLEN Int [-231+1,231-1] observed Template LENgth

10 SEQ String *|[A-Za-z=.]+ segment SEQuence
11 QUAL String [!-~]+ ASCII of Phred-scaled base QUALity+33

1. QNAME: Query template NAME. Reads/segments having identical QNAME are regarded to
come from the same template. A QNAME ‘*’ indicates the information is unavailable. In a
SAM file, a read may occupy multiple alignment lines, when its alignment is chimeric or when
multiple mappings are given.

2. FLAG: bitwise FLAG. Each bit is explained in the following table:

Bit Description
0x1 template having multiple segments in sequencing
0x2 each segment properly aligned according to the aligner
0x4 segment unmapped
0x8 next segment in the template unmapped

0x10 SEQ being reverse complemented
0x20 SEQ of the next segment in the template being reversed
0x40 the first segment in the template
0x80 the last segment in the template

0x100 secondary alignment
0x200 not passing quality controls
0x400 PCR or optical duplicate
0x800 supplementary alignment

• For each read/contig in a SAM file, it is required that one and only one line associated with
the read satisfies ‘FLAG & 0x900 == 0’. This line is called the primary line of the read.

• Bit 0x100 marks the alignment not to be used in certain analyses when the tools in use are
aware of this bit. It is typically used to flag alternative mappings when multiple mappings
are presented in a SAM.

• Bit 0x800 indicates that the corresponding alignment line is part of a chimeric alignment.
A line flagged with 0x800 is called as a supplementary line.

• Bit 0x4 is the only reliable place to tell whether the read is unmapped. If 0x4 is set, no
assumptions can be made about RNAME, POS, CIGAR, MAPQ, bits 0x2, 0x10, 0x100 and
0x800, and the bit 0x20 of the previous read in the template.

• If 0x40 and 0x80 are both set, the read is part of a linear template, but it is neither the first
nor the last read. If both 0x40 and 0x80 are unset, the index of the read in the template is
unknown. This may happen for a non-linear template or the index is lost in data processing.

• If 0x1 is unset, no assumptions can be made about 0x2, 0x8, 0x20, 0x40 and 0x80.

4

1.4 The alignment section: mandatory fields

In the SAM format, each alignment line typically represents the linear alignment of a segment. Each
line has 11 mandatory fields. These fields always appear in the same order and must be present, but
their values can be ‘0’ or ‘*’ (depending on the field) if the corresponding information is unavailable.
The following table gives an overview of the mandatory fields in the SAM format:

Col Field Type Regexp/Range Brief description

1 QNAME String [!-?A-~]{1,255} Query template NAME
2 FLAG Int [0,216-1] bitwise FLAG
3 RNAME String *|[!-()+-<>-~][!-~]* Reference sequence NAME
4 POS Int [0,231-1] 1-based leftmost mapping POSition
5 MAPQ Int [0,28-1] MAPping Quality
6 CIGAR String *|([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT String *|=|[!-()+-<>-~][!-~]* Ref. name of the mate/next read
8 PNEXT Int [0,231-1] Position of the mate/next read
9 TLEN Int [-231+1,231-1] observed Template LENgth

10 SEQ String *|[A-Za-z=.]+ segment SEQuence
11 QUAL String [!-~]+ ASCII of Phred-scaled base QUALity+33

1. QNAME: Query template NAME. Reads/segments having identical QNAME are regarded to
come from the same template. A QNAME ‘*’ indicates the information is unavailable. In a
SAM file, a read may occupy multiple alignment lines, when its alignment is chimeric or when
multiple mappings are given.

2. FLAG: bitwise FLAG. Each bit is explained in the following table:

Bit Description
0x1 template having multiple segments in sequencing
0x2 each segment properly aligned according to the aligner
0x4 segment unmapped
0x8 next segment in the template unmapped

0x10 SEQ being reverse complemented
0x20 SEQ of the next segment in the template being reversed
0x40 the first segment in the template
0x80 the last segment in the template

0x100 secondary alignment
0x200 not passing quality controls
0x400 PCR or optical duplicate
0x800 supplementary alignment

• For each read/contig in a SAM file, it is required that one and only one line associated with
the read satisfies ‘FLAG & 0x900 == 0’. This line is called the primary line of the read.

• Bit 0x100 marks the alignment not to be used in certain analyses when the tools in use are
aware of this bit. It is typically used to flag alternative mappings when multiple mappings
are presented in a SAM.

• Bit 0x800 indicates that the corresponding alignment line is part of a chimeric alignment.
A line flagged with 0x800 is called as a supplementary line.

• Bit 0x4 is the only reliable place to tell whether the read is unmapped. If 0x4 is set, no
assumptions can be made about RNAME, POS, CIGAR, MAPQ, bits 0x2, 0x10, 0x100 and
0x800, and the bit 0x20 of the previous read in the template.

• If 0x40 and 0x80 are both set, the read is part of a linear template, but it is neither the first
nor the last read. If both 0x40 and 0x80 are unset, the index of the read in the template is
unknown. This may happen for a non-linear template or the index is lost in data processing.

• If 0x1 is unset, no assumptions can be made about 0x2, 0x8, 0x20, 0x40 and 0x80.

4

3. RNAME: Reference sequence NAME of the alignment. If @SQ header lines are present, RNAME
(if not ‘*’) must be present in one of the SQ-SN tag. An unmapped segment without coordinate
has a ‘*’ at this field. However, an unmapped segment may also have an ordinary coordinate
such that it can be placed at a desired position after sorting. If RNAME is ‘*’, no assumptions
can be made about POS and CIGAR.

4. POS: 1-based leftmost mapping POSition of the first matching base. The first base in a reference
sequence has coordinate 1. POS is set as 0 for an unmapped read without coordinate. If POS is
0, no assumptions can be made about RNAME and CIGAR.

5. MAPQ: MAPping Quality. It equals �10 log10 Pr{mapping position is wrong}, rounded to the
nearest integer. A value 255 indicates that the mapping quality is not available.

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table (set ‘*’ if un-
available):

Op BAM Description
M 0 alignment match (can be a sequence match or mismatch)
I 1 insertion to the reference
D 2 deletion from the reference
N 3 skipped region from the reference
S 4 soft clipping (clipped sequences present in SEQ)
H 5 hard clipping (clipped sequences NOT present in SEQ)
P 6 padding (silent deletion from padded reference)
= 7 sequence match
X 8 sequence mismatch

• H can only be present as the first and/or last operation.

• S may only have H operations between them and the ends of the CIGAR string.

• For mRNA-to-genome alignment, an N operation represents an intron. For other types of
alignments, the interpretation of N is not defined.

• Sum of lengths of the M/I/S/=/X operations shall equal the length of SEQ.

7. RNEXT: Reference sequence name of the primary alignment of the NEXT read in the template.
For the last read, the next read is the first read in the template. If @SQ header lines are present,
RNEXT (if not ‘*’ or ‘=’) must be present in one of the SQ-SN tag. This field is set as ‘*’ when
the information is unavailable, and set as ‘=’ if RNEXT is identical RNAME. If not ‘=’ and the
next read in the template has one primary mapping (see also bit 0x100 in FLAG), this field is
identical to RNAME at the primary line of the next read. If RNEXT is ‘*’, no assumptions can
be made on PNEXT and bit 0x20.

8. PNEXT: Position of the primary alignment of the NEXT read in the template. Set as 0 when
the information is unavailable. This field equals POS at the primary line of the next read. If
PNEXT is 0, no assumptions can be made on RNEXT and bit 0x20.

9. TLEN: signed observed Template LENgth. If all segments are mapped to the same reference, the
unsigned observed template length equals the number of bases from the leftmost mapped base
to the rightmost mapped base. The leftmost segment has a plus sign and the rightmost has a
minus sign. The sign of segments in the middle is undefined. It is set as 0 for single-segment
template or when the information is unavailable.

10. SEQ: segment SEQuence. This field can be a ‘*’ when the sequence is not stored. If not a ‘*’,
the length of the sequence must equal the sum of lengths of M/I/S/=/X operations in CIGAR.
An ‘=’ denotes the base is identical to the reference base. No assumptions can be made on the
letter cases.

11. QUAL: ASCII of base QUALity plus 33 (same as the quality string in the Sanger FASTQ format).
A base quality is the phred-scaled base error probability which equals�10 log10 Pr{base is wrong}.
This field can be a ‘*’ when quality is not stored. If not a ‘*’, SEQ must not be a ‘*’ and the
length of the quality string ought to equal the length of SEQ.

5

1.5 The alignment section: optional fields

All optional fields follow the TAG:TYPE:VALUE format where TAG is a two-character string that matches
/[A-Za-z][A-Za-z0-9]/. Each TAG can only appear once in one alignment line. A TAG containing
lowercase letters are reserved for end users. In an optional field, TYPE is a single case-sensitive letter
which defines the format of VALUE:

Type Regexp matching VALUE Description

A [!-~] Printable character
i [-+]?[0-9]+ Singed 32-bit integer
f [-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)? Single-precision floating number
Z [!-~]+ Printable string, including space
H [0-9A-F]+ Byte array in the Hex format2

B [cCsSiIf](,[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)+ Integer or numeric array

For an integer or numeric array (type ‘B’), the first letter indicates the type of numbers in the following
comma separated array. The letter can be one of ‘cCsSiIf’, corresponding to int8 t (signed 8-bit
integer), uint8 t (unsigned 8-bit integer), int16 t, uint16 t, int32 t, uint32 t and float, respec-
tively.3 During import/export, the element type may be changed if the new type is also compatible
with the array.

Predefined tags are shown in the following table. You can freely add new tags, and if a new tag
may be of general interest, you can email samtools-devel@lists.sourceforge.net to add the new
tag to the specification. Note that tags starting with ‘X’, ‘Y’ and ‘Z’ or tags containing lowercase letters
in either position are reserved for local use and will not be formally defined in any future version of
this specification.

Tag

4
Type Description

X? ? Reserved fields for end users (together with Y? and Z?)
AM i The smallest template-independent mapping quality of segments in the rest
AS i Alignment score generated by aligner
BC Z Barcode sequence, with any quality scores stored in the QT tag.
BQ Z O↵set to base alignment quality (BAQ), of the same length as the read sequence. At the

i-th read base, BAQi = Qi � (BQi � 64) where Qi is the i-th base quality.
CC Z Reference name of the next hit; ‘=’ for the same chromosome
CM i Edit distance between the color sequence and the color reference (see also NM)
CO Z Free-text comments
CP i Leftmost coordinate of the next hit
CQ Z Color read quality on the original strand of the read. Same encoding as QUAL; same

length as CS.
CS Z Color read sequence on the original strand of the read. The primer base must be included.
CT Z Complete read annotation tag, used for consensus annotation dummy features.5

E2 Z The 2nd most likely base calls. Same encoding and same length as QUAL.
FI i The index of segment in the template.
FS Z Segment su�x.
FZ B,S Flow signal intensities on the original strand of the read, stored as (uint16 t)

round(value * 100.0).
LB Z Library. Value to be consistent with the header RG-LB tag if @RG is present.
H0 i Number of perfect hits
H1 i Number of 1-di↵erence hits (see also NM)
H2 i Number of 2-di↵erence hits
HI i Query hit index, indicating the alignment record is the i-th one stored in SAM
IH i Number of stored alignments in SAM that contains the query in the current record
MC Z CIGAR string for mate/next segment
MD Z String for mismatching positions. Regex : [0-9]+(([A-Z]|\^[A-Z]+)[0-9]+)*6

MQ i Mapping quality of the mate/next segment
NH i Number of reported alignments that contains the query in the current record
NM i Edit distance to the reference, including ambiguous bases but excluding clipping

2For example, a byte array {0x1a,0xe3,0x1} corresponds to a Hex string ‘1AE301’.
3Explicit typing eases format parsing and helps to reduce the file size when SAM is converted to BAM.

6

