
Suffix Array

A suffix array is a data structure designed for efficient searching of a large
text. It is an array of integers giving the starting position of the suffixes of
a string in lexicographical order.

It can be used as index to quickly locate every occurrence of a substring
within the string. Finding every occurrence of the substring is equivalent
to finding every suffix that begins with the substring.

Thanks to the lexicographical ordering these suffixes will be grouped
together in the suffix array, and can be found efficiently using a binary
search.
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Suffix array is a memory-efficient alternative to suffix trees

SUFFIXARRAY (“panamabananas$”) = [13,5,3,1,7,9,11,6,4,2,8,10,0,12]



Suffix Array

How do we build a suffix array?

• Easiest solution: build a suffix tree

• Traverse the tree in DFS, lexicographically picking edges outgoing
from each node and fill the suffix array

• O(n) time

• Waste of space: can we do it directly in O(n) time? Unknown until
2003
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Burrows-Wheeler transformation

It performs a transformation of an input sequence consisting of a reversible
permutation of the sequence characters which gives a new string that is
easier to compress: if the original string has several substrings that
occur often, then the transformed string has several places where a single
character is repeated multiple time.
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Burrows-Wheeler transformation

Reversible permutation used originally in lossless data compression:

Input (x) transformed in the matrix of all circular shifts of x, sorted
lexicographically. Then the last column of the matrix became the BWT(x)
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Another Example

appellee$
ppellee$a
pellee$ap
ellee$app
llee$appe
lee$appel
ee$appell
e$appelle
$appellee

appellee$
$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

BWT(appellee$) = 
e$elplepa 

Doesn’t always improve 
the compressibility...

sort







How would you do it: 
• L2: Sequence alignment: O(m*n) 
• L3: Hashing / BLAST: O(m+n) 

– Solution until 2008 (e.g. MAQ, Li et al, GR 2008) 

• Other advanced algorithms:  
– Linear-time string matching: O(m+n). L3 addendum 
– Suffix trees and suffix arrays: O(m). L13 addendum 

• Challenge: memory requirements 
– Hash table, suffix tree/array require O(m*n) space 

• Today: Burrows-Wheeler transformation O(m) 
– Ultrafast/memory efficient. New norm since 2009. 
– Introduced in: Bowtie (Langmead GB 2009). 13 

Second Generation Mappers have Leveraged the 
Burrows Wheeler Transformation 

“…35 times faster than Maq and 300 times 
faster than SOAP under the same conditions”

Two indexing strategies for read mapping 

 

15 

Multi-seed
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Wheeler

Transform

Today: How does the BW
transform actually work?

Burrows-Wheeler Transform (BWT) 
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• Transform: ^BANANA@ INTO: BNN^AA@A 
 
 

• Reversible 
 function inverseBWT (string s)

create empty table
repeat length(s) times

insert s as a column of table before first column of the table // first insert creates first column
sort rows of the table alphabetically 

return (row that ends with the 'EOF' character)

@
function BWT (string s)

create a table, rows are all possible rotations of s
sort rows alphabetically
return (last column of the table)

last 1st
col

pairs 2nd

col
triples 3rd

col
4mers 4thcol 5mers 5thcol 6-mers 6thcol 7-mers 7thcol 8-mers Full matrix

Last column only suffices to reconstruct entire matrix, and thus recover original string

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Key properties of Burrows-Wheeler Transform 
• Very little memory usage. Same as input (or less) 

– Don’t represent matrix, or strings, just pointers 
– Encode: Simply sort pointers. Decode: follow pointers 

• Original application: string compression (bZip2) 
– Runs of letters compressed into (letter, runlength) pairs 

• Bioinformatics applications: substring searching 
– Achieve similar run time as hash tables, suffix trees 
– But: very memory efficient ! practical speed gains 

• Mapping 100,000s of reads: only transform once 
– Pre-process once; read counts in transformed space. 
– Reverse transform once, map counts to genome coords 
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P is the input substring
C[c] – is how many characters occur 
before c lexographically in the 
genome
Occ(c,k)  is the number of 
occurrence of the character c before 
index k in the far right column

 Searching for an Exact Match 
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e.g. Searching for OLIS
In MANOLISKELLIS
For simplicity (here): 
- only exact matches
- Show entire matrix
In practice: only pointers

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

Pseudocode from Langmead et al, 2009. Example by Jason Ernst. 

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

OLISOLIS OLIS OLIS



Recovering the string
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Inverse BWT

def inverseBWT(s):
B = [s1,s2,s3,...,sn]
for i = 1..n:

sort B
prepend si to B[i]

return row of B that ends with $



Another BWT Exampledo$oodwg
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All cyclic rotation of string panamabananas$, note that the first row of 
matrix M contains the word with the special character in first position



If we determine the first row of M(Text) then we can move the $ to 
the end of this row to reproduce Text.  

How do we determine the remaining symbols on this first row, if all 
we know is FirstColumn and LastColumn?



The symbol in LastColumn must precede the symbol of Text 
found in the same row of the FirstColumn

Note that the first symbol in Text must follow $ in any cyclic rotation of Text.

Rule1:



The next symbol of Text should be the first symbol in a row of M(Text) that end in a. 
But, five rows and in an a and we don’t known which of them is the correct one!

The three possibilities for the third element of the first row of M(Text) when BWT(Text) is  
ard$rcaaaabb. How would you choose among b, c and d for the second symbol of Text?



pa3na2ma1ba4na5na6s$

To determine the remaining symbols of Text , we need to define the First-Last Property. We can 
rank the six instances of a appear in FirstColumn and we say that they have ranks from 1 to 6.

a1bananas$panam

panama1bananas$

Considering a1 in the FirstColumn

If we cyclically rotate this string, we obtain:

Now we can identify the positions of the 
other five instances:

Where are the other five instance of a located in LastColumn?



The k-th occurrence of symbol in FirstColumn and the k-th occurrence of 
symbol in LastColumn correspond to the same position of symbol in Text.

Rule2:



The rows are already ordered in 
lexicographically, so if we chop off the a from 

the beginning of each row the remaining strings 
should still be ordered lexicographically:

Adding a back to the end of each row should not 
change the lexicographic ordering of these rows:

The Rule2 can be of course generalised for any possible symbol and any string Text.

pa3na2ma1ba4na5na6s$





How do we can use the FirstLast Property for the Burrows-Wheeler inversion

The FL prop reveals 
where a3 is hiding in 

LastColumn:

Since we know that a3 is located ate the end of 
the eighth row, we can wrap around   this row to 

determine that b2 follows a3 in the Text

Application of Rule 1



Repeated applications of the FL prop to 
reconstruct the Text from its BWT

Inverting the BWT



Each row of M(Text) begins with a different suffix of the Text. Since these 
suffixes are already ordered lexicographically, any matches of Pattern in Text 

will clump together at the beginning of rows of M(Text).

Pattern matching with BWT

How do we do pattern matching without knowing the entire matrix M(Text)?



String to search ana

Application of 
Rule 2

All three n are 
associated to 
an a in the 

FirstColumn

Three a are 
associated to 
an n in the 

LastColumn



Pattern matching with BWT - Using pointers

The pointers top and bottom hold the indices of the first and last rows of M(Text) matching the 
current suffix of Pattern. The above diagram shows how these pointers are updated when walking 

backwards through ana and looking for substring matches in panamabananas$



Given a symbol at position i of 
LastColumn, the Last-to-First 
mapping identifies this symbol’s 
position in FirstColumn



Pattern matching with BWT



























To complete the pattern matching algorithm we need to answer

Where are the matched patterns?

and

How do we deal the mis-match tolerance?



Where are the matched patterns?

The suffixes of panamabananas$ that begin 
the rows of M(panamabananas$) are 

highlighted, and the suffixes beginning with 
ana are shown in green.  

The suffix array records the starting position of 
each suffix in Text.



How do we deal the mis-match tolerance?

acttaggctcgggataatcc
actaagtctcgggataagcc

Pattern
Text

Theorem. If two strings of length n match with at most d mismatches, then they 
must share at least one k-mer of length k = [n/(d+1)]



To extend the BWT to approximate pattern matching, we will not stop when we 
encounter a mismatch. We proceed onward until we either find an approximate match 
or exceed the limit of d mismatches.

The number of mismatches encountered in a given row is shown in the column on the left.



How would you do it: 
• L2: Sequence alignment: O(m*n) 
• L3: Hashing / BLAST: O(m+n) 

– Solution until 2008 (e.g. MAQ, Li et al, GR 2008) 

• Other advanced algorithms:  
– Linear-time string matching: O(m+n). L3 addendum 
– Suffix trees and suffix arrays: O(m). L13 addendum 

• Challenge: memory requirements 
– Hash table, suffix tree/array require O(m*n) space 

• Today: Burrows-Wheeler transformation O(m) 
– Ultrafast/memory efficient. New norm since 2009. 
– Introduced in: Bowtie (Langmead GB 2009). 13 

Second Generation Mappers have Leveraged the 
Burrows Wheeler Transformation 

“…35 times faster than Maq and 300 times 
faster than SOAP under the same conditions”

Two indexing strategies for read mapping 
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Multi-seed
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Transform

Today: How does the BW
transform actually work?

Burrows-Wheeler Transform (BWT) 
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• Transform: ^BANANA@ INTO: BNN^AA@A 
 
 

• Reversible 
 function inverseBWT (string s)

create empty table
repeat length(s) times

insert s as a column of table before first column of the table // first insert creates first column
sort rows of the table alphabetically 

return (row that ends with the 'EOF' character)

@
function BWT (string s)

create a table, rows are all possible rotations of s
sort rows alphabetically
return (last column of the table)

last 1st
col

pairs 2nd

col
triples 3rd

col
4mers 4thcol 5mers 5thcol 6-mers 6thcol 7-mers 7thcol 8-mers Full matrix

Last column only suffices to reconstruct entire matrix, and thus recover original string

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Key properties of Burrows-Wheeler Transform 
• Very little memory usage. Same as input (or less) 

– Don’t represent matrix, or strings, just pointers 
– Encode: Simply sort pointers. Decode: follow pointers 

• Original application: string compression (bZip2) 
– Runs of letters compressed into (letter, runlength) pairs 

• Bioinformatics applications: substring searching 
– Achieve similar run time as hash tables, suffix trees 
– But: very memory efficient ! practical speed gains 

• Mapping 100,000s of reads: only transform once 
– Pre-process once; read counts in transformed space. 
– Reverse transform once, map counts to genome coords 

17 

P is the input substring
C[c] – is how many characters occur 
before c lexographically in the 
genome
Occ(c,k)  is the number of 
occurrence of the character c before 
index k in the far right column

 Searching for an Exact Match 
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e.g. Searching for OLIS
In MANOLISKELLIS
For simplicity (here): 
- only exact matches
- Show entire matrix
In practice: only pointers

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

Pseudocode from Langmead et al, 2009. Example by Jason Ernst. 

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

1. $MANOLISKELLIS
2. ANOLISKELLIS$M
3. ELLIS$MANOLISK
4. IS$MANOLISKELL
5. ISKELLIS$MANOL
6. LIS$MANOLISKEL
7. LISKELLIS$MANO
8. LLIS$MANOLISKE
9. KELLIS$MANOLIS
10.MANOLISKELLIS$
11.NOLISKELLIS$MA
12.OLISKELLIS$MAN
13.S$MANOLISKELLI
14.SKELLIS$MANOLI

OLISOLIS OLIS OLIS



Checkpointing in FM Index

• LF(i, c) determines the rank of qc in row i

• Nave way: count occurrences of qc in all previous rows, complexity is
linear in length of text too slow
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Checkpointing in FM Index

• Solution: pre-calculate cumulative counts for A/C/G/T up to periodic
checkpoints in BWT
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Relationship Between 
BWT and Suffix Arrays

$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

$
appellee$
e$
ee$
ellee$
lee$
llee$
pellee$
ppellee$

BWT
matrix

The suffixes 
are obtained
by deleting 
everything 
after the $

These are still in 
sorted order 
because “$” 
comes before 
everything else

9
1
8
7
4
6
5
3
2

s = appellee$
123456789

Suffix array 
(start position 

for the suffixes)

s[9-1] = e
s[1-1] = $
s[8-1] = e
s[7-1] = l
s[4-1] = p
s[6-1] = l
s[5-1] = e
s[3-1] = p
s[2-1] = a

Suffix position - 1 = 
the position of the 
last character of 
the BWT matrix

($ is a special case)

subtract 1



Relationship Between 
BWT and Suffix Trees

• Remember: Suffix Array = suffix numbers obtained by traversing 
the leaf nodes of the (ordered) Suffix Tree from left to right.

• Suffix Tree ⇒ Suffix Array ⇒ BWT.

$

e

lee$

p

e$$
llee$

l

ee$

pellee$
ellee$

∑ = {$,e,l,p}
appellee$
123456789

s = 
9

8

4

7
6 5

3
3

Ordered suffix tree 
for previous example:



FM Index is Small

• Entire FM Index on DNA reference consists of:

– BWT (same size as x)

– Checkpoints ( 15% size of x)

– SA sample ( 50% size of x)

• Total: 1.65x the size of x
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Algorithms comparison
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Algorithms comparison
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SHRiMP

The accuracy of the various tools considering a synthetic dataset with
continuous mismatches.
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Algorithms comparison
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Execution Time

Accuracy of the various tools over synthetic dataset and the execution time
of each tool.
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