Next generation sequencing

The SOLiDsystem enables massively parallel sequencing of DNA
fragments. SOLiDis based on sequential ligation of dye labelled
oligonucleotide probes whereby each probe queries two base position at
a time.

Color Space Sequence

GC CA CC TC
CG GT AG

TT CT EliaseZero

Possible Dinucleotides

15t Base

AT TG GG Decoded Sequence

A . A
A T G G A Base Space Sequence

C330201030313112312

CGCCTTGGCCGTACAGCAG

The SOLiDsystem enables massively parallel sequencing of DNA
fragments. SOLiDis based on sequential ligation of dye labelled
oligonucleotide probes whereby each probe queries two base position at

a time.
Decoding

2nd Base . @ . Color Space Sequence
TA AC AA ()

68 G4 EQ TG
CG GT AG

TT CT EliaseZero

AT TG GG Decoded Sequence

. . A
AT G GA Base Space Sequence

C330201030313112312

CGCCTTGGCCGTACAGCAG

The quality scores are a linear measure of the chance that the color call is
correct. In SOLiDtechnology the maximum value of quality is equal to 33
meaning that the sequenced base is correct.

Possible Dinucleotides

15t Base

FASTQ format:

@SEQ_TID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTARATCCATTTGTTCAACTCACAGTTT
+

Lovvw [((((***+)) B%%++) ($%%%S) 1*x**-+*1 1)) **55CCF>>>>>>CCCCCCCHS

The scores is based on phred scoring scheme:
Qph'red — _10l0.910(6)

where e is the estimated probability of a base being wrong.

The obtained value is enconded in ASCII character by adding 64 to the
Phred value.

String of colors can also be treated as transformations by simply applying
one color transformation after another.
To decode the sequence A320:

continuing in this way until all bases are decoded.

The sequence A32130220 is defined as a single function ¢:
t = fO(f2(f2(f0(f3(f1(f2(f3(A))))))))

String of colors can also be treated as transformations by simply applying
recursively by the color transformation.
To decode the sequence A320:

continuing in this way until all bases are decoded.

The sequence A32130220 is defined as a single function ¢:
t = fO(f2(f2(f0(f3(f1(f2(f3(A))))))))

Considering the following example:

t(A32130) = fO(f3(f1(f2(f3(A)))) = ATCATT (1)

£H(C32130) = FO(F3(f1(F2(f3(C))))) = CGACGG (2)

Let N ={A,C,G, T} the color-code should satisfy the following
requirements:

1. The available colors are 0, 1, 2 and 3:
Let b, d two nucleotides: color (bd) € {0, 1, 2, 3}

2. A di-base and its reverse get the same color:

Second Base

& € & T

aseq 15414

=1 @ o P

3. Two different di-bases that have the same first base get different colors:

aseq 1S4

A
&
G
T

Second Base

A

0

C

1

G

2

4. Two different di-bases that have the same second base get different
colors:

Second Base
A C G T
0 1 Z 3

1

aseg 15114
. O I

-
02

5. Monodibases get the same color:

Second Base

A € |G T

>
o
—
N
W

aseg 18114
)
mamarth
o=

6. A di-base and its complement get the same color:

aseq 1S4

Second Base

A

C

1

G

2

The group C'is isomorphic to the Klein four-group.

The elements of Klein group K are :
e ; identity mapping from the plane to itself
e h reflection in z-axis
e v reflection in y-axis
e r rotation thought 180

and o as the binary operation.

The meaningful of the binary operator of a group could be interpreted as
"followed by”: i.e. vo h = r means that a vertical reflection followed by a
horizontal reflections is the same, as if it has rotated the rectangle by 180
degrees.

The multiplication table is:

i/ v hi
ili|vih|r
??irh
h h riv
rri hiwv/i

From the previous example: vo h = r.

The group of color operations C' is isomorphic with respect to Klein four
group labelling the corners of the rectangle with the four nucleotides and
witnessing their transformations following the four symmetries of a
rectangle.

BB
=

Using the Klein four group to obtain the code for strings of colors as
transformation of bases.

- o

ALl
TLL

The set of color is a Klein four group defines as C' = {0,1,2,3} where @
represents the binary operation.

The four element of the symmetry group of a rectangle can be easily
associated with the colors. The corresponding additional table for color
sequence 1is:

WNhNRLR OO
N Wo R
R O W NN
O R DWW

D
0
1
2
3

The set of color is a Klein four group defines as C' = {0, 1,2, 3} where &
represents the binary operation.

Since C is a group the following axioms hold:

L.
2.
3.

Closure (' is closed under the operation ®: a,b € C = a® b € C;
Associative (a®b) Dc=a® (bDc) for all a,b,c € C;

Identity there exists an element ¢ € C (called the identity of C') such
that: a®i=i1® a = a for all a € C;

Inverse for every element a € C, there exists an element a=! € C
(called the inverse of a) such that a @a™! = a1 ®a = 1.

The set of color is a Klein four group defines as C' =0, 1, 2, 3,4 where @
represents the binary operation.

Since C is a group the following axioms hold:
1. Closure C is closed under the operation &: a,b € C — a® b € C|
2. Associative (a®b) Dc=a® (bDc) for all a,b,c € C;

3. Identity there exists an element ¢ € C (called the identity of C') such
that: a®i=1® a = a for all a € C;

4. Inverse for every element a € C, there exists an element a= ! € C
(called the inverse of a) such that a ®a™! = a™ ! ®a = 1.

It is usual, when working with groups, to replace & simply juxtapose the
elements being combined.
Then the following sequence A32130220 becames:

AD2010300020200

A single polymorphism is amplified in color-space on two adjacent color
positions.

Base-space Color-space

Cl c2c3c4

Reference: C G T A C cC 3131
Read: C GAAC C 3201
C. C,C,Cq

In order for colors cs, c3, cg, c7 to be consistent with this variant, they must
satisfy the following proprieties:

1. 627506
2. 62@63206@07
3. c3 # ¢y

Even though there are 9 possible color pairs only three of them correspond
to a SNP.

If there is only one color muted instead of two, all the following sequence
from that color is muted.

Base—-space Color-space

C1C2C3C4

Reference: CGTAZC C 3131

Encoding

Mutation on c3: C 3 1 0 1 » CGTTG
c 31 21 C GTCA

Cc 3111 CGTGT

Mutation on cy,: ¢ 3 2 3 1 CGATG
cC 3031 CGGCA

cC 33 31 CGCGT

Base—-space Color-space

Reference: CGTALC

C
Read: C A A A C C

The three necessary proprieties in order to obtain two adjacent mismatches
in the respective nucleotide sequence are:

1. 617&65
2. ¢c1 ®cy # c5 D
3. c1Deadeg =c5DBcg Doy

Reference:

Read:

The proprieties are:

. €1 # Cg

. 1D cy F cgD ey

Base—space

CGTACG
CCATCG

1
2
3. c1DcaBes #cgDerDes
4

.C1DP o PDe3Peys =cgPerdesg D ey

Color-space

Let C = (by,c1,...,cn) and C" = (by,], ...,) be two color codings
where by, by € {ACGT} and ¢;, ¢, € {0,1,2,3} then the k-color sub-string

r = (¢} ..., ;) encodes an isolated (k-1)base change with respect to

k-color sub-string C = (c;, ..., cxyj) iff
® fe;ou---Jer(bo) = fer - fey(bp)
° @J‘Hﬂ 1 ! ?é @J-l—k? 1

GBJJrk / EBJ c;

@) Deletion

Base—space Color-space
Cp Cp, C3C
Reference: A CGTA Al 313
Read: AC-TA Al 2 -3
Cs Cg C7Cq

Insertion
Base-space Color-space

cl c2c3c4 C:5(:6
Reference: AC=-=--=GT

A1 3
Read: A CTAGGT Al 2
C7C8

Qw
an
Qo

1
9 0 llC12

In deletion the main propriety is: cg = co B c3

In insertion the main propriety is: co = cg @ cg D c19 D c11

3

. Mew gaguencing
technelcgies

— ChIP

— Microarray

— qPCR

= SNP analysis

— DMA foctprinting

~—— Southern or
northerr biot

2

PuoMed publications

PubMed was searched in two-year increments for key words and the
number of hits plotted over time.

GGTATAC. ..

...CCATAG TATGCGCCC CGGAAATTT CGGTATAC
...CCAT CTATATGCG TCGGAAATT CGGTATAC
...CCAT GGCTATATG CTATCGGAAA GCGGTATA
..CCA AGGCTATAT CCTATCGGA TTGCGGTA

G
...CCA AGGCTATAT GCCCTATCG TTTGCGGT C.
..CC AGGCTATAT GCCCTATCG AAATTTGC ATAC...
...CC TAGGCTATA GCGCCCTA AAATTTGC GTATAG...

LCCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAL...

GAAATTTGC
GGAAATTTG
CGGAAATTT
CGGAAATTT
TCGGAAATT
CTATCGGAAA
CCTATCGGA TTTGCGGT
GCCCTATCG AAATTTGC

I & GCCCTATCG AAATTTGC ATAC...

_.CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC. .

* Mapping the reads to a
reference genome can
be computationally
challenging

* Hundreds of million of
reads, genomes in the
size of billion base pairs

* Sequencing errors and
genomic variations

e Where in genome did each read originate? i.e., given a reference
genome and a set of reads, report at least one good local alignment for
each read if one exists

e What is good? For instance
— Fewer mismatches is better

— Failing to align a low-quality base is better than failing to align a
high-quality base

o T
~TGATGATA. botier than 7557 C3TA-
GATCAR GAGAAT
i Irl
BGATATTA potter than ~T§ATGATA-
GATcaT GTACAT

e Short read mapping is a version of a well- known problem:
(approximate) string matching

e More than two dozen linear-time algorithms have been designed for
exact string matching (KMP, BM, DFA-based, FFT-based,)

e Not as many for approximate strings matching

e But they cannot be used directly for this application

e Fact Given two strings w; and ws at Hamming distance d from each

other, they both contain an exact occurrence of a substring of length
at least [m/(d + 1)]. [Baeza-Yates and Perleberg, or BYP]

e Example
wp = GATTTCA
wy = GGTTACA
TT and CA are occurring exactly.
In fact [m/(d +1)] = [7/3] = 2.

All alignment tools considered follow a similar organization into macro
S.eps:

e Pre-processing to pre-process the reference genome (or reads set) into
one or more index tables;

e Mapping to find matches in the index tables for all queried
subsequences and to locate the regions of potential homology;

e Result Refinement to examine all potential matches produced in the
previous step using the full read-genome substring alignment.

e MAQ http://maq.sourceforge.net/ (PMID: 18714091).

e ELAND
e ZOOM

http://www.bioinformaticssolutions.com/products/zoom/index.php
(PMID: 18684737)

e MOSAIK http://bioinformatics.bc.edu/marthlab/Mosaik.

e SOCS http://socs.biology.gatech.edu/ (PMID: 18842598)
e PERM http://code.google.com/p/perm/ (PMID: 19675096)
e SHRiMP http://compbio.cs.toronto.edu/shrimp/ (PMID: 19461883).

e Bowtie http://bowtie-bio.sourceforge.net

e BWA http://bio-bwa.sourceforge.net/bwa.shtml (PMID: 19451168)

Section 1:
Repeat Finding and
Hash Tables

Genomic Repeats

* Repeat: A sequence of DNA that occurs more than once 1n a
genome.

 Example: ATGGTCTAGGTCCTAGTGGTC

Genomic Repeats

* Repeat: A sequence of DNA that occurs more than once 1n a
genome.

 Example: ATGGTCTAGGTCCTAGTGGTC

Genomic Repeats

* Repeat: A sequence of DNA that occurs more than once 1n a
genome.

 Example: ATGGTCTAGGTCCTAGTGGTC

Genomic Repeats

* Repeat: A sequence of DNA that occurs more than once 1n a
genome.

 Example: ATGGTCTAGGTCCTAGTGGTC

Genomic Repeats

* Repeat: A sequence of DNA that occurs more than once 1n a
genome.

 Example: ATGGTCTAGGTCCTAGTGGTC

 Why do we want to find repeats?
1. Understand more about evolution.
2. Many tumors are characterized by an explosion of repeats.

3. Genomic rearrangements are often associated with repeats.

Genomic Repeats

* Note: Often, a repeat will refer to a segment of DNA that
occurs very often with slight modifications.

* As we might imagine, this is a more difficult computational
problem.

Genomic Repeats

* Note: Often, a repeat will refer to a segment of DNA that
occurs very often with slight modifications.

* As we might imagine, this is a more difficult computational
problem.

 Example: Say our target segment 1s GGTC and we allow one
substitution:

e ATGGTCTAGGACCTAGTGTTC

Genomic Repeats

* Note: Often, a repeat will refer to a segment of DNA that
occurs very often with slight modifications.

* As we might imagine, this is a more difficult computational
problem.

 Example: Say our target segment is GGTC and we allow one
substitution:

e ATGGTCTAGGACCTAGTGTTC

Genomic Repeats

* Note: Often, a repeat will refer to a segment of DNA that
occurs very often with slight modifications.

* As we might imagine, this is a more difficult computational
problem.

 Example: Say our target segment 1s GGTC and we allow one
substitution:

e ATGGTCTAGGACCTAGTGTTC

Genomic Repeats

* Note: Often, a repeat will refer to a segment of DNA that
occurs very often with slight modifications.

* As we might imagine, this is a more difficult computational
problem.

 Example: Say our target segment 1s GGTC and we allow one
substitution:

e ATGGTCTAGGACCTAGTGTTC

Extending I-mer Repeats

» Long repeats are difficult to find, but short repeats are easy.

« Simple approach to finding long repeats:
1. Find exact repeats of short /-mers (/ is usually 10 to 13).

2. Use [-mer repeats to potentially extend into longer,
maximal repeats.

Extending I-mer Repeats

« Example: We start with a repeat of length 4.

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT

 Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT

 Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT
« Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT
« Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT
« Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT
« Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

« Example: We start with a repeat of length 4.
e GCTTACAGATTCAGTCTTACAGATGGT

 Extend both these 4-mers:

e GCTTACAGATTCAGTCTTACAGATGGT

Extending I-mer Repeats

Example: We start with a repeat of length 4.

GCTTACAGATTCAGTCTTACAGATGGT

Extend both these 4-mers:

GCTTACAGATTCAGTCTTACAGATGGT

Maximal repeat: CTTACAGAT

Maximal Repeats: Issue

* In order to find maximal repeats in this way, we need ALL
start locations of ALL /-mers in the genome.

* Hashing lets us find repeats quickly in this manner.

Hashing

« Hashing 1s a very efficient way to store and retrieve data.

 What does hashing do?

« Say we are given a collection of data.

« For different entry, generate a unique integer and store the
entry in an array at this integer location.

Hashing: Definitions

Records: data stored in a hash table.

« Keys: Integers 1dentifying set of records.

« Hash Table: The array of keys used in hashing.

« Hash Function: Assigns each record to a key.

e Collision: Occurs when more than one record is mapped to the
same index 1n the hash table.

An Introduction to Bioinformatics Algorithms

www.bioalgorithms.info

Hashing: Example

e Records: Animals

Birdseed
king‘(

« Keys: Where each
animal eats.

Records
T

Keys
h(z)

Penguin
Octopus
Turtle
Mouse
Snake
Heron
Tiger
Iguana
Ape
Cricket
Sparrow

i = == T o R S T S RS I S

Hashing DNA sequences

e Each [-mer can be translated into a binary string:

e A can be represented as 00
e T can be represented as 01
e G can be represented as 10
e Ccan be represented as 11
« Example: ATGCTA =000110110100

After assigning a unique integer to each /-mer, it 1s easy to
obtain all start locations of each /-mer in a genome.

Hashing: Maximal Repeats

« To find repeats 1n a genome:

1. For all /-mers in the genome, note the start position and the
sequence.

2. Generate a hash table index for each unique /-mer
sequence.

3. At each index of the hash table, store all genome start
locations of the /-mer that generated the index.

4. Anywhere there are collisions in the table, extend
corresponding /-mers to maximal repeats.

« How do we deal with collisions?

Hashing: Collisions

e In order to deal with {-mer #1 10 20 Loo] 20 J400 J450
collisions: {-mer #2
{-mer #3

e “Chain” all start locations of

3 11003 J2003 503 43

[-mers.

11

15] 151125

* This can be done via a data
structure called a linked list.

Chained Locations of {-mers

{-mer #n

An hash table is basically an array which uses a hash function to efficiently
map an input string, called key to an associated value.

Each input string, typically large, is encoded by a hash function in a
smaller datum, called hash, (i.e. a single integer).

A hash function is a function which converts every string into a numeric
value, called its hash value; for example, we might have:

hash(”hello”) =5

First application way
The hash function applied to a read r will return the index of the array
that contains the positions in the reference in which the read is found.

If the hash table stores the position of each substring of 35 nucleotides of a
reference genome, and if the same substring appears more than once in the
reference, then the hash table is not an array of integers, but an array of
sets of integers.

Ideally, the hash function should map each possible key to a different
index; but this is not ensured in practice: two or more different keys may
have the same hash hash collision.

In the genome mapping step if the hash table contains positions that
match different substrings, a further step is required to ensure the mapping
correctness.

The hash table can contains the information of reference genome or of the
input reads, so that a full mapping can be performed by the lookup of a
read (or a set of reads) in the hash table of the reference genome, or vice
versa.

In both cases, due to hash collisions, all the found matches have to be
verified.

Second application way

k-mers are substrings of length k (also called seeds or g-grams)

A direct-address table of all k-mers over a DNA alphabet requires 4”
entries (some could be unused)

Each entry in the table is a pointer to the list of occurrences of that
k-mer

Hash the genome or the queries (short reads)?

Create a hash table of size 4%

AACTGTACCAGTGAG

Create a hash table of size 4%

AACTGTI~

AACTGTaccagtgag

Create a hash table of size 4%

AACTGT
ACTGTAI—— JACTGTAccagtgag

Create a hash table of size 4%

AACTGT

ACTGTA >
T

oy —+ aa;_ TGTACfagtgag

Create a hash table of size 4%

AACTGT \
ACTGTA— 3 accGTACCagtgag
CTGTAC //;'.

TGTACC

Create a hash table of size 4*: each entry has a pointer to the list of reads
that contain that k-mer

AACTGTH——| Read 7 ——* Read 12—+
ACTGTA ——Read 32———|Read 13}---»
CTGTAC—[Read 18—+ Read 7 |-+
TGTACC——"Read 12}———|Read 15}---»

Considerations
e The table can be very large

e The number of entries should be as uniform as possible (avoid
sparseness)

e Entries in direct-address tables tend to be non- uniform, but if one
uses hashing functions (e.g., h(x) = x mod p, p prime) collisions need
to be resolved

BLAST is faster than Smith-Waterman, but it cannot guarantee the
optimal alignments of the query and database sequences. BLAST
essentially follows the seed-and-extend paradigm.

e keep the position of each n-mer subsequence
e scan the database sequences for n-mer exact matches, seeds
e extend and joins the seeds first without gaps

e refine them by a SmithWaterman algorithm

The idea of seeds is used for preprocessing and matching.

A seed is a set of selected positions within a window which generates fixed
length sub-sequences along a string.

When a seed is aligned to a read or a genomic sequence, selected positions
are concatenated to form a fixed length subsequence which can be used to
extract similar reads or genomic substrings.

Each seed is associated with a weight that correspond to the probability of
seed matching by chance or not, when the seed is very short is associated
with a low weight since the probability that matching by chance becomes
greater.

All the algorithms that use the seeds divide each read into k& + m
fragments to provide full sensitivity to & mismatches.

Conventional Read Mapping Seeds
32bp Read:

ACGTACGNCCCCTTTIACGTACGTARRAGGGS

Lookup Table 1 (3 cases):
|ﬁCGTﬂCG'IiCCCCTTTTu—*** R S L L L]

H“Hi{CCCCTTmCGTACG'#“*H“

R L ******PCGTACG?AAMGGG(H

Lookup Table 2 (2 cases):
BCSTRECOT* *++ *xx+ LACETACGTF v+ ® + * & &
********CCCCTTTI‘********AHAAG@

Lookup Table 3 (1 case):
BT OTAC S Th s+ x k2 ke k% % *-

Conventional seeds divide a 32 bp read into four substrings. For any

alignment within two mismatches, at least one of six pairs of substrings
will match exactly.

All the algorithms that use the seeds divide each read into k& + m
fragments to provide full sensitivity to £ mismatches.

Conventional Read Mapping Seeds
32bp Read:

ACGTACGNCCCCTTTIACGTACGTARRAGGGG

Lookup Table 1 (3 cases):
P-\CGTHCGTICCCCTTTT****************

w4 4%k 4k ACOCCTTTIRCOTACE Tw 5 4 4 5 %+ +
khkdErrrrrrrrr++x OO TAOSITEL DR COGO
Lookup Table 2 (2 cases):
BROSTROS T ** w v+ % g0 GTAOGTHF #+ ++ + 4+

exw e n e (COCCTTTTR # v wn # w ARAARGGGG)
Lookup Table 3 (1 case):
RO ETAC S Th e ook ke e d ke k * % a.-

The choice of different algorithms:

e (Corona Lite chooses m = 3;
o KFLAND, MAQ and SOAP chooses m = 2.

e More recently space seeds, where predetermined positions in the read
are allowed not to match, have been shown to be more sensitive.

e Space seed is a set of 'care’ and ’don’t care’ positions, annotated as ’1’s
and "*’s respectively. Usually the length of the seed is the total length
of the string, and the weight of the seed as the number of 1s in the
string.

e It was empirically demonstrated that an optimal spaced seed
quadruples the search speed, without sacrificing sensitivity (probability
of having at least one hit in a highly similar region between query and
genome) Several results followed to explain the advantage

Single Periodic Spaced Seed
32bp Read:

ACGTACGTCCCCTTTTACGTACGTARARGEGE
Lookup the Single Table (7 cases):

ECG*Q**PCC*C*%TT&*G*%CGT*AE*****

*CGT*C**:CC*T**TAC*T**GT&*AE****
* ﬂGTA*G* xpoosT* *11;::@-*1;* *1TI:.A*E|* "
HTEC*TCCT*T*‘CGT*C*%EAA*GP**
* % *ﬂgce*c** CTT*T* ﬂGTg*G* ﬂﬁm*e e
k ke AOQT O+ *[PTT*A* 4 TAC*T* HALG*Q}
s+ rx e fATOC* *[PTT*C* JACG* A+ {ACC*C

The single periodic spaced seed full sensitive to two mismatches over a 32
bp read. For any alignment within two mismatches, at least one out of the

seven subsequences will match exactly. This seed is composed of repeating
the pattern (111*1**)

0.9

0.8

0.7+

0.6

ansitivity

04
0.3 -
0.2 |

0.1k

%

Performance of weight 11 spaced seeds versus weight 11 and 10 consecutive

MOTEN 1001070111
LARRRRRRRR A
1111111111

05 08 D07 08
similarity

seeds (from Ma et al, Bioinformatics 2002)

0.8

