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Pattern Matching 

•  What if, instead of finding repeats in a genome, we want to 
find all sequences in a database that contain a given pattern? 

•  This leads us to a different problem, the Pattern Matching 
Problem. 
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Pattern Matching Problem 

•  Goal: Find all occurrences of a pattern in a text. 

•  Input: 
•  Pattern p = p1…pn of length n  
•  Text t = t1…tm of length m 

•  Output: All positions 1< i < (m – n + 1) such that the n-letter 
substring of text t starting at i matches the pattern p. 

•  Motivation: Searching database for a known pattern. 
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Exact Pattern Matching: A Brute Force Algorithm 

PatternMatching(p,t) 
1   n  length of pattern p 
2  m  length of text t 
3  for i  1 to (m – n + 1) 
4     if ti…ti+n-1 = p 
5        output i 
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•  PatternMatching algorithm for: 
•  Pattern GCAT 
•  Text AGCCGCATCT 

Exact Pattern Matching: An Example 
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•  PatternMatching runtime: O(nm) 
•  In the worst case, we have to check n characters at each of 

the m letters of the text. 
•  Example: Text = AAAAAAAAAAAAAAAA, Pattern = AAAC 

•  This is rare; on average, the run time is more like O(m). 
•  Rarely will there be close to n comparisons at each step. 

•  Better solution: suffix trees…solve in O(m) time. 

•  First we need keyword trees. 

Exact Pattern Matching: Running Time  
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Approximate Pattern Matching Problem 

•  Goal: Find all approximate occurrences of a pattern in a text. 

•  Input: A pattern p = p1…pn, text t = t1…tm, and k, the 
maximum allowable number of mismatches. 

•  Output: All positions 1 < i < (m – n + 1) such that ti…ti+n-1 and 
p1…pn have at most k mismatches. i.e., HammingDistance(ti…
ti+n-1, p) ≤ k. 
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Approximate Pattern Matching: Brute Force 

ApproximatePatternMatching(p, t, k) 
1. n  length of pattern p 
2. m  length of text t 
3.  for i  1 to m – n + 1 
4.     dist  0 
5.     for j  1 to n 
6.        if ti+j-1 ≠ pj 
7.           dist  dist + 1 
8.     if dist < k 
9.        output i 
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Approximate Pattern Matching: Running Time 

•  The brute force algorithm runs in O(mn) time. 

•  Landau-Vishkin algorithm: Gives improvement to O(km).  

•  We will next generalize the “Approximate Pattern Matching 
Problem” into a “Query Matching Problem.” 
•  Rather than patterns, we want to match substrings in a 

query to substrings in a text with at most k mismatches. 

•  Motivation: We want to see similarities to some gene, but we 
may not know which parts of the gene to look for. 
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Query Matching Problem 

•  Goal: Find all substrings of a query that approximately match 
the text. 

•  Input: Query q = q1…qw   
                  Text t =  t1…tm,  
                        n = length of matching substrings 
                        k = maximum number of mismatches 

•  Output: All pairs of positions (i, j) such that the n-letter 
substring of query q starting at i approximately matches the n-
letter substring of text t starting at j, with at most k mismatches. 
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Approximate Pattern Matching vs Query Matching 
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Filtration in Query Matching: Main Idea 

•  Approximately matching strings share some perfectly 
matching substrings. 

•  Instead of searching for approximately matching strings 
(difficult) search for perfectly matching substrings (easy).  
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MAQ

MAQ is based on spaced seeds; six templates are used, i.e. 11110000,
00001111, 11000011, 00111100, 11001100, and 00110011, where nucleotides
at 1 will be indexed while those at 0 are not.

As a threshold between sensibility and efficiency, MAQ does not consider
any mapping that has more than two mismatches in the first 28 positions.
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MAQ

If a read aligns to multiple positions, MAQ scores the various possibilities
through quality scores and compatibility on the complementary strand.

All the hits found on the forward strand of the reference sequence are
stored in a queue.

While examining the reverse strand, if a hit for a read is found, MAQ
looks up the queue to check if there is a partial overlapping with one of the
hits found on the forward strand.
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MAQ

A pair of reads is correctly mapped if both the end of the hits are
consistent, i.e. correct orientation within the proper distance.

If only one can be mapped with confidence, a possible scenario is that an
indel in one of the two reads occurred.

The classical Smith Waterman algorithm is then applied on the two reads
to check validity of the alignment with/without indel or SNP.

MAQ research team is now working on Burrows-Wheeler Aligner (BWA).
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Detailed Algorithms

• SHRiMP: Accurate Mapping of Short Color-space Reads [1]

• Bowtie:Ultrafast and memory-efficient alignment of short dna
sequences to the human genome [2]

[1] Rumble S, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M SHRiMP: Accurate Mapping of
Short Color-space Reads
PLOS, 2009

[2] Langmead B, Trapnell C, Pop M, and Salzberg SL Ultrafast and memory-efficient alignment of
short dna sequences to the human genome Genome Biology, 2009
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SHRiMP

SHRiMP features:

1. Both Color-Space and Letter-Space reads mapping.

2. Allows insertions and deletions.

3. Read mapping probabilities and statistics.

SHRiMP pipeline:

1. Spaced-seed matching

2. Smith-Waterman Algorithm for alignment scores.

3. Alignment probabilities and statistics calculation.
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Algoritmi di allineamento di DNA - Smith e Watermann

Smith e Watermann (1981) É una variante dell’algoritmo di N-W che
permette di trovare l’allineamento locale ottimo. L’algoritmo é il seguente:

1: for (i=0 to length(A)) do
2: F(i,0) ← 0;
3: for (j = 0 to length(B)) do
4: F(0,j) ← 0;
5: for (i = 1 to length(A)) do
6: for (j = 0 to length(B)) do
7: Choice1 ← F (i− 1, j − 1) + S(A(i), B(j));
8: Choice2 ← F (i− 1, j)− d;
9: Choice3 ← F (i, j − 1)− d;

10: Choice4 ← 0;
11: F(i,j) ← max(Choice1, Choice2, Choice3, Choice4);
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Algoritmi di allineamento di DNA - Smith e Watermann

Smith e Watermann (1981)

• Goal: allineamenti locali, matrici di sostituzione con anche valori
negativi;

• Stessi criteri per l’assegnazione degli scores;

• Nuova origine con score zero se i percorsi di origine risulteranno
negativi;

L’inizializzazione prevede: F (i, 0) = F (0, j) = 0 per ogni i = 1 . . . n e
j = 1 . . .m.
In questo caso non ci sono punteggi negativi!
L ’ opzione zero corrisponde ad iniziare un nuovo allineamento.
Intuitivamente, se un allineamento ad un certo punto ha un punteggio
negativo allora é meglio cominciarne uno nuovo piuttosto che estendere il
vecchio.
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Algoritmi di allineamento di DNA - Smith e Watermann

Una volta costruita la matrice F , l’allineamento si ottiene a partire
dall’individuazione del massimo dell’intera matrice e seguendo i puntatori
all’indietro fino ad incontrare uno zero, punto d’inizio dell’allineamento.
Quindi l’allineamento puó iniziare e terminare in un qualunque punto della
matrice.
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SHRiMP - Smith-Waterman Algorithm
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SHRiMP pipeline

Spaced seeds:
1111000011110000 , 0000111100001111 1111000000001111,
0000000011111111, 1111111100000000, 0000111111110000
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q-gram filter

Shrimp uses the seed 111**111 that requires matches at positions 13 and
68, and has length 8 and weight 6. Because seeds with such small weight
match extremely often, we require multiple seeds to match within a region
before it is further considered, using a technique called Q-gram filtering.

Let us consider a pattern G, a string R, a value k. It is possible to assert
that R matches in G with at most k mismatches if it contains at least

t = |R|− q + 1− (kq)

where q is the length of substring used to split R.

A T G T C G A T G C A T A C

A T G T C G A T
A T G
T G T
G T C
T C G
C G A
G A T

q=3

|R|=8
k=1
t=5

R:

G:

t=3
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Gapped q-gram

• gapped q-grams can provide orders of magnitude faster and/or more
efficient filtering than contiguous q-grams

• Use substrings with gaps, also called q-shapes

• The optimal threshold could be computed by an exhaustive search of
all combinations of k mismatches, but this is prohibitively expensive
for large value of k and |q|.

A T G T C G A T G C A T A C

A T G T C G A T
1 *  1

q=3
|R|=8
k=1
t=?

R:

G:

1  * 1
1 * 1

1 * 1
1 * 1

1 * 1
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SHRiMP

SHRiMP Pipieline :

• Spaced seed: reads mapping in the genome, look up each read in the
genome.

• Q-gram filters: multiple continuos-seeds are used to determine if a
good match exists. SHRiMP requires a pre-determined number of
seeds from a read to match within a window of the genome before we
conduct a thorough comparison.

• Vectorized Smith-Waterman Algorithm.

• Final refinement genome.
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SHRiMP - Smith-Waterman Algorithm

SHRiMP modifies the original Smith-Waterman Algorithm by also
considering transition from one letter space to another during the search

for the optimal alignment (with a penalty for space transition).
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SHRiMP - Statistics

SHRiMP estimates the confidence in the possible mappings of each read by
using the following statistics:

• pchance the probability that the hit occurred by chance

• pgenome the probability that the hit was generated by the genome,
given the observed rates of the various evolutionary and error events.

For example, a good alignment would have a low pchance (close to 0) and
a very high pgenome (close to 1).
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SHRiMP - Results

135 million reads of length 35 bp from a single C. savignyi individual.

Highly polymorphic; SNP heterozygosity 4.5%; even small reads can
contain several variants.
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