The choice must be computed considering the most Efficient algorithm

> While Euler solver the Eulerian Path Problem, nobody has developed a fast algorithm for the Hamiltonian Path Problem yet.

The Hamiltonian Path Problem belongs to a collection containing thousands of computational problems for which no fast algorithms are known, namely NP(NonDeterministic Polynomial Time)Complete Problems

Several computational problems fall in the NP-Complete Category, and the Hamitonian Path problem is one of the seven Millennium Problem in mathematics.

A graph is Eulerian if it contains an Eulerian Cycle
Has this graph an Eulerian cycle or is this graph Eulerian?

A graph is balance if incoming arcs are equals to outcoming arcs for each node

Balance but disconnect graph

Eulerian graph must be balance and strongly connected, i.e. it is possible to reach any node from every other node

Euler's Theorem: Every balanced, strongly connected directed graph is Eulerian

To prove that the Graph has an Eulerian cycle, place the ant at any node vo of the graph and let him randomly walk through the graph under the condition that he cannot traverse the same edge twice

The ant is lucky!!

The ant get stuck when he is in the starting node v_{0}. Why? The constructed cycle is not Eulerian, can we enlarge it?

Let's start at a different node in the Green Cycle, in a node with still unexplored edges. Starting at a node that has used edge, traverse the already constructed (green cycle) and return back to the starting node

He is get stuck in again the starting node

Staring a new node and traversing the previously constructed green and blue cycles

When the ant arrive at the starting node there is the possibility to explore other edges and to enlarge the Eulerian cycle


```
EulerianCycle(BalancedGraph)
    form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
        while Cycle is not Eulerian
        select a node newStart in Cycle with still unexplored outgoing edges
        form a Cycle' by traversing Cycle from newStart and randomly walking afterwards
        Cycle \leftarrowCycle'
    return Cycle
```

The proof of the Eulerian theorem offers and example of a constructive proof, which proves the desired results and provide also a method for constructing the object we need.

From Eulerian cycle to Eulerian paths

Has an eulerian path and we can transform this Eulerian path into Eulerian cycle by adding a connection

Multiple Eulerian Paths

A given string cannot be uniquely reconstructed for its 3 -mres composition since another string has the same 3-mers composition.

TAATGCCATGGGATGTT TAATGGGATCCGATGTT

TAATGGGATGCCATGTT

Which is the correct?

Breaking genome into Contigs

Force the graph to decompose it
in multiple components

Breaking genome into Contigs

Multiple Eulerian paths

How can we connect these contigs?

DNA Sequencing with Read-pairs

Multiple identical copies of genome

\| Randomly cut genomes into large equally sized fragments of size InsertLength

Generate read-pairs: two reads from the ends of each fragment (separated by a fixed distance)

Assembling genomes from read-pairs

Which type of information can help? ->read length
->paired-end read
$\mathrm{k}=$ length sequence

$\mathrm{d}=$ fixed distance in the genome
$\mathrm{k}+\mathrm{d}+\mathrm{k} \longrightarrow \quad$ sequence between the two reads the read length increase to $2 \mathrm{k}+\mathrm{d}$

Let Reads be the collection of all 2 N k-mers reads taken from N read-pair, a read-pair formed by k-mer reads Read1 and Read2 corresponds to two edges in the deBruijn graph.

Assembling genomes from read-pairs

Set of Reads generated from TAATGCCATGGGATGTT and formed by reads of length 3 separated by a gap of length .

How transforming read-pairs into long virtual reads

The highlighted path of length $\mathrm{k}+\mathrm{d}+\mathrm{k}$ $=3+1+3=5$ between the edges labeled ATT and CCA spells out AATGCCA, then a long read has been created.

Basic assumption: the path that links two reads is unique

Assembling genomes from read-pairs

Basic assumption: the path that links two reads is unique

This assumption limits the application of this techniques since in the genome there are several repetitive genomic regions.

The basic assumption limits the application of long virtual reads approach to assembly readpairs because repetitive genomic regions often contain multiple path of the same length

DeBruijn Graph for the string AATCTGACATATGG

Assembling genomes from read-pairs - Alternative approach

Given a string Text, a (k, d)-mer is a pair of k-mers on Text separated by distance d .
Eg (ATG | GGG) is paired (3,4)-mer in TAATGCCATGGGATGTT
PaierdComposition 3, (TAATGCCATGGGATGTT)
TAA GCC
AAT CCA
ATG CAT $\longrightarrow \quad$ List of the $(3,1)$-mers according

TGC ATG GCC TGG CCA GGG
CAT GGA ATG GAT TGG ATG GGG TGT GGA GTT
TAATGCCATGGGATGTT

The list of the $(3,1)$-mers of these two string is different, TAATGGGATCCGATGTT

Assembling genomes from read-pairs - Alternative approach

Paired de Bruin graph

Given a (k, d)-mer $\left(a_{1}, \ldots a_{k} \mid b_{1}, \ldots b_{k}\right)$

$$
\begin{aligned}
& \operatorname{PREFIX}\left(\left(a_{1} \ldots a_{k} \mid b_{1}, \ldots b_{k}\right)\right)=\left(\left(a_{1} \ldots a_{k-1} \mid b_{1}, \ldots b_{k-1}\right)\right) \\
& \operatorname{SUFFIX}\left(\left(a_{1} \ldots a_{k} \mid b_{1}, \ldots b_{k}\right)\right)=\left(\left(a_{2} \ldots a_{k} \mid b_{2}, \ldots b_{k}\right)\right)
\end{aligned}
$$

Define the set of prefix and suffix of (k, d)-mers.
PREFIX $(\mathrm{GAC} \mid \mathrm{TCA})=(\mathrm{GA} \mid \mathrm{TC})$ $\operatorname{SUFFIX}(\mathrm{GAC} \mid \mathrm{TCA})=(\mathrm{AC} \mid \mathrm{CA})$

Note that for consecutive (k,d)-mers appearing in the Text, the suffix of the first (k, d) mer is equal to the prefix of the second (k, d)-mer.

$$
\operatorname{SUFFIX}((\operatorname{TAA} \mid G C C))=\operatorname{PrEFIX}((\mathbf{A A T} \mid \mathbf{C C A}))=(\mathbf{A A} \mid \mathbf{C C}) .
$$

TAATGCCATGGGATGTT

A PathGraph $\mathrm{k}, \mathrm{d}($ Text $)$ that represents a path formed by Text is creating by nodes in which are stored suffix and prefix and edges that are labeled by the (k,d)mers

PATHGRAPH $_{3.1}($ TAATGCCATGGGATGTT)

Paired de Bruijn graph

From the

PathGraph3,1(TAATGCCATGGGATGTT)

is formed by 11 edges and 12 nodes. The Paired deBruijn graphics again formed by gluing the nodes sharing the same label.

and follow the Eulerian path we can found the complete Text.

Which Graph Represents a Better Assembly?

Paired de Bruijn Graph

Which Graph Represents a Better Assembly?

Unique genome reconstruction
TAATGCCATGGGATGTT
Multiple genome reconstructions
TAATGCCATGGGATGTT

TAATGGGATGCCATGTT

Paired de Bruijn Graph

De Bruijn Graph

Genome assembly

Read Errors $\xrightarrow{\text { solved by }}$ bubble identification

