
Genome Assembly problem in the language
for computer scientists

input: A collection fo string called Reads

Genome Sequencing Problem

Reconstruction a genome from reads

output: A string Genome reconstructed from Reads

This is not a computational problem!!!

Reconstruction strings from a k-mers.

input: A string Text and a integer k

String Composition Problem

Generate the k-mer compositions of a string

output: COMPOSITIONk(Text), where the k-mers are arranged in
lexicographic order (since the Position is not available)

Given a a string Text, its k-mer composition COMPOSITIONk(Text) is
the collection of all k-mer substring of Text

COMPOSITION3 (TAATGTT) ={AAT,ATG,GTT,TAA,TGT}

input: A collection of k-mers.

Reconstruction a string from its k-mer composition

output: A Genome such that COMPOSITIONk(Genome) is equal to
the collection of k-mers.

Reconstruction strings from a k-mers.

String Reconstruction Problem, for genome assembly purpose

Reconstruction strings from a k-mers.

String reconstruction problem is perform connecting a pair of k-mers if
they overlap on k-1 symbols.

TAATGTT

input: An integer k and a collection Patterns of k-mers

String Reconstruction Problem
Reconstruct a string from its k-mer composition

output: A string Text with k-mer composition equal to Patterns

Reconstruction strings from a k-mers.

TAATGCCATGGATGTT

Unfortunately, we are stuck at GTT since no 3-mers in the set of k-mers
composition start with TT.

Repeats complicate
genome assembly

continuing the precess,
we obtain the following assembly

From a string to a graph

In blue repeated regions.

The 15 color-code 3-mers making the sequence
as a graph to form a genome path according to
their order on the genome.

There are two standard ways of representing a graph. Fro directed graph
with n nodes, the nXn adjacency matrix (Ai,j) is defined by the following
rule: Ai,j=1 if a directed edge connects node i to node j, and Ai,j=0 otherwise.
Another way of representing a graph is use an adjacency list, for which we
simply list all nodes connected to each node.

Two graph representations

From a string to a graph

input: A sequence of k-mers Pattern1,…Patternn such that the last k-1 symbols of
Patterni are equal to the first k-1 symbols of Patterni+1 for 1 <= n-1

String Spelled by a genome path Problem

Reconstruct a string from its genome path

output: A string Text of length k+n-1 such that the i-th k-mer in Text
is equal to Patterni (for i <= i <=n)

Suffix(TAA) = Prefix(AAT) = AA

The string’s genome path from its k-mer composition we will
use an arrow to connect any k-mer Pattern to a k-mer Pattern’

if the suffix of Pattern’ is equal to the prefix of Pattern’.

From a string to a graph

This direct graph represents all overlap connection between nodes representing the 3-
mer composition of the string

 Note that: ATG can be connected with: TGG
TGC
TGT

From a string to a graph
In the previous graph it is possible follows the horizontal path to define the genome
sequence, but if we want define the overlap graph with 3-mer ordered in
lexicographical way, the path vanish.

To generalise the construction of the graph, we form a node for
each k-mer in Patterns and connect the k-mers by a direct edge
if the suffix is equal to the prefix => overlap graph

Overlap graph problem

input: A collection Patterns of k-mers

Overlap Graph Problem
Construct the overlap graph of a collection of k-mers

output: The overlap graph OVERLAP (Patterns)

The Overlap graph (Hamiltonian graph) is a graph in which each read is represented by a
node and overlap between reads is represented by an arrow (called a directed edge) joining
two reads. For instance, two nodes representing reads may be connected with a directed
edge if the reads overlap by at least five nucleotides.
The Hamiltonian cycle, is a path that travels to every node exactly once and ends at the
starting node, meaning that each read will be included once in the assembly.

Hamiltonian graph using reads

Figure b (see previous slide): The Hamiltonian graph is a graph in which each read is
represented by a node and overlap between reads is represented by an arrow (called a
directed edge) joining two reads. For instance, two nodes representing reads may be
connected with a directed edge if the reads overlap by at least five nucleotides.
The Hamiltonian cycle, is a path that travels to every node exactly once and ends
at the starting node, meaning that each read will be included once in the
assembly.

113 / 269

input: A direct graph

Hamiltonian Path Problem
Construct a Hamiltonian path in a graph

output: A path visiting every node in the graph exactly once (if
such a path exists).

In the String Reconstruction Problem the path are generated by visiting every
node exactly once.

TAATGCCATGGGATGTT

TAATGGGATGCCATGTT

Composition 3 (TAATGCCATGGGATGTT) =

Can we construct this genome path without knowing the genome
TAATGCCATGGGATGTT, only from its composition?

Representing a Genome as a Path

YES. We simply need to connect k-mer1 with k-mer2 if
suffix (k-mer1)=prefix(k-mer2).

i.e. TAA -> AAT

Summary prev lesson

suffix (k-mer1)=prefix(k-mer2).
i.e. TAA -> AAT

Can we still find the genome path in this graph?

Summary prev lesson

de Bruijn graphs

New graph representation: assign the 3-mers to the edges. Since each pair of
consecutive edges represent two consecutive 3-mers, they overlap in two nucleotides.

From this graph it is possible build a complex version by gluing the identical nodes.

de Bruijn graphs

In the this graph there are 3 identical nodes AT, that can be collapsed in a single node.

de Bruijn graphs

Same glue procedure for the 3 identical nodes TG

de Bruijn graphs

Same glue procedure for the 2 identical nodes GG

The final graph is called de Bruin graph: DeBRUIJN3(TAATGCCATGGATGTT)
This procedure has reduced from 16 to 11 node, while the number of edges stayed the same.

de Bruijn graphs

Given a genome Text, PATHGRAPHk(Text) is the path consisting of
 |Text| - k +1 edges, where the i-th edge of this path is labeled by the

 i-th k-mer in Text and the i-th node of the path is labeled by the i-th (k-1)-mer in Text.

input: A string Text and an integer k

De Bruijn graph from String Problem
Construction the de Bruijn graph of a string

output: DEBruijnk(Text)

de Bruijn graphs - Construction from a k-mer composition without gluing

Give a collection of k-mers Pattern, the node of DeBruijnk(Patterns) are simply all unique
(k-1)-mers occurring as a prefix or suffix in Patterns.

Patterns

The set of 11 unique 2-mers occurring as a prefix or suffix:

For every k-mer in Patterns, we connect its prefix node to its suffix node by a directed edge in
order to produce DeBruijn(Patterns).

de Bruijn graphs - Construction from a k-mer composition

The previous graph is the same that we obtained with the previous approach.

same graph although
it has been drawn

differently

de Bruijn graphs - Eulerian Path Problem

We must solve the String Reconstruction Problem to find a path that visit every edge exactly
once. (Eularian Path)

TAATGCCATGGATGTT

input: A direct graph

Eulerian Path Problem
Construction an Eulerian path in a graph

output: a path visiting every edge in graph exactly once (if such a path exists)

DEBRUIJN(Patterns)
Represent every k-mer in Patterns as an

isolated edge between its prefix and suffix
glue all nodes with identical labels, yielding

the graph DEBRUIJN(Patterns)

return DEBRUIJN (Patterns)

Overlap graph -> Hamiltonian path

De Bruijn graph -> Eulerian path

finding a path visiting every
node exactly once

finding a path visiting every
edge exactly once

Overlap graph versus De Bruijn graph

Overlap graph -> Hamiltonian path

De Bruijn graph -> Eulerian path

Overlap graph versus De Bruijn graph

What problem would
you prefer to Solve?

