Sensory stimuli:

Light Heat Mechanical force Chemical compounds Sensory cells:

Photo-receptors Thermo-receptors Mechano-receptors Chemo-receptors

A B C D

Sensory transduction

<u>Threshold</u>: the **minimum intensity** of a stimulus that is required to produce a response from a sensory system

<u>Saturation</u>: the **maximal intensity** of a stimulus that produces a response from a sensory system

<u>Dynamic Range</u>: the **range of intensities** that will produce a response from a receptor or sensory system (i.e., the difference between threshold and saturation)

Electrotonic potential

graduated

- ·local (propagation with exponential decay)
- integration
- depolarization/hyperpolarization

Action potential

•all or none
•long distance propagation
•always a depolarization

TRP channels and senses

TRP Channels

Kartik Venkatachalam and Craig Montell Annu. Rev. Biochem. 2007. 76:387–417

Within the six kingdoms of life, bacteria, protozoa, chromista, plantae, fungi and animalia, TRPrelated genes seem to be found only in fungi and animalia.

Despite extensive genomic studies, no single TRPencoding gene has been identified in land plants so far, but the genome of chlorophyte algae seems to contain several types of putative TRP-like genes. In the green alga Ostreococcus tauri, at least one of the putative genes might encode a potential TRP channel involved in a Ca2+ signaling pathway. Therefore, land plants might have lost TRP channels after their divergence from the chlorophyte algae.

Table 1. The TRP channel families.							
	Drosophila melanogaster	Caenorhabditis elegans	Ciona intestinalis	Fugu rubripes	Danio rerio	Mus musculus	Homo sapiens
TRPC	3	3	8	8	8	7	6
TRPV	2	5	2	4	4	6	6
TRPM	1	4	2	6	6	8	8
TRPA	4	2	4	1	2	1	1
TRPN	1	1	1	-	1	-	-
TRPML	1	1	9	2	2	3	3
TRPP	1	1	1	4	4	3	3
Total	13	17	27	25	27	28	27

Table 1 The TDD abarmal (amilian

TRP channels in *Drosophila melanogaster*, *Caenorhabditis elegans*, the sea squirt *Ciona intestinalis*, the puffer fish (*Fugu rubripes*), the zebrafish (*Danio rerio*), mouse and human. Other estimates report that there are nearly 60 TRPs in zebrafish, 30 in sea squirt, and 24 in nematodes [24,99]. The number of channels denoted in the table refers to those that have known functions.

Current Biology 18, R880-R889, September 23, 2008 @

TRPs in Our Senses

Nils Damann¹, Thomas Voets¹, and Bernd Nilius^{1,*}

Figure 1. Aristotle's five senses + the sixth sense (equilibrium). Colors and color combinations indicate the type of sensory receptors involved. TRP channels closely involved in the sensory process are also indicated.

Gene	Chromosomal	Selectivity	Modulation of activity	Highest expression	
name	localization	P _{Ca} :P _{Na}			
TRPC subfamily					
TRPC1	3q22–q24	Nonselective	Store depletion, conformational coupling, mechanical stretch ^b	Heart, brain, testis, ovary, liver, spleen	
TRPC2 ^a	7, 50.0 cM	2.7	Diacylglycerol (DAG)	VNO, testis	
TRPC3	4q27	1.6	Store depletion, conformational coupling, DAG, exocytosis	Brain	
TRPC4	13q13.1-q13.2	7	Store depletion (?), exocytosis	Brain, endothelia, adrenal gland, retina, testis	
TRPC5	Xq23	9.5	Store depletion (?), sphingosine-1-phosphate, exocytosis	Brain	
TRPC6	11q21-q22	5	Conformational coupling, DAG, PIP ₃	Lung, brain, placenta, ovary	
TRPC7	5q31.2	1.9 ^c , 5 ^d	Store depletion, DAG	Eye, heart, lung	

TRPV subf	family			
TRPV1	17p13.3	3.8 (heat), 9.6 (vanilloids)	Heat (43°C), vanilloids, anandamide, camphor, piperine (black pepper), allicin (garlic), ethanol, nicotine, proinflammatory cytokines, protons, PIP ₂ , phosphorylation exocytosis	TG, DRG, neurons, urinary bladder, testis
TRPV2	17p11.2	3	Heat (52°C), osmotic cell swelling, exocytosis	DRG, spinal cord, brain, spleen, intestine
TRPV3	17p13.3	2.6	Warm (33–39°C); PUFAs; menthol; compounds from oregano, cloves, and thymes	TG, DRG, spinal cord, brain, keratinocytes, tongue
TRPV4	12q24.1	6	Warm (27–34°C), osmotic cell swelling, 5'6'-EET, exocytosis	DRG, kidney, lung, spleen, testis, heart, keratinocytes, heart, liver, endothelia
TRPV5	7q35	>100	Low intracellular Ca ²⁺ , hyperpolarization, exocytosis	Kidney, intestine, pancreas, placenta
TRPV6	7q33-q34	>100	Store depletion, exocytosis	Small intestine, pancreas, placenta

Gene name	Chromosomal localization ^a	Selectivity P _{Ca} :P _{Na}	Modulation of activity	Highest expression
TRPM su	bfamily		•	•
TRPM1	15q13-q14	Nonselective	Translocation (?) ^b	Brain, melanosomes
TRPM2	21q22.3	~0.3	ADP-ribose, cADP-ribose, pyrimidine nucleotides, arachidonic acid, NAD, H ₂ O ₂ , Ca ²⁺	Brain, bone marrow, spleen
TRPM3	9q21.11	1.6	Osmotic cell swelling, store depletion (?)	Kidney, brain, pituitary
TRPM4	19q13.33	Monovalent cation selective	Ca ²⁺ , voltage modulated, PIP ₂	Prostate, colon, heart, kidney, testis
TRPM5	11p15.5	Monovalent cation selective	Ca ²⁺ , voltage modulated, PIP ₂ , heat (15–35°C)	Intestine, liver, lung, taste cells
TRPM6	9q21.13	Divalent cation selective (Mg ²⁺ and Ca ²⁺)	Mg ²⁺ inhibited, translocation	Kidney, small intestines
TRPM7	15q21	Divalent cation selective (Mg ²⁺ and Ca ²⁺)	Mg ²⁺ inhibited, ATP, protons, phosphorylation, PIP ₂	Kidney, heart, pituitary, bone, adipose
TRPM8	2q37.2	3.3	Cool (23–28°C), menthol, icilin, pH modulated, PIP ₂	DRG, TG, prostate, liver

TRPA and	TRPN				
TRPA1	8q13	0.8	Cold (17°C) (?), icilin, isothiocyanat (mustard oil, horseradish, and wasab allicin (garlic), cinnamaldehyde (cinnamon oil), acrolein (tear gas), cannabinoids, bradykinin, DAG, PUFAs, mechanically gated (?)	es DRG, hair cells, ovary, i), spleen, testis	
zTRPN	_	?	Mechanically gated (?)	Ear, eye	
Gene	Chromosomal	Selectivity	Modulation of activity	Highest expression	
name	localization ^a	P _{Ca} :P _{Na}			
TRPP2	4q21–q23	Nonspecific	Ca ²⁺ , translocation, TRPP1, EGF,	Widely expressed, kidney	
			PIP ₂ , fluid flow, actin cytoskeleton ^b		
TRPP3	10q24	4.3	Ca ²⁺	Kidney, heart	
TRPP5	5q31	-	_	Testis, heart	
TRPML1	19p13.2–p13.3	Monovalent cation selective (?)	pH, Ca ²⁺ , proteolytic cleavage	Brain, heart, skeletal muscle	
TRPML2	1p22	-	_	-	
TRPML3	1p22.3	-	-	Cochlear hair cells ^c	

TRP in yeast: TRPY1 in vacuolar membranes

Hypertonic shock- calcium entry

TRPY1 is a mechanosensor and chemosensor sensitive to indols and aromatic compounds

Fig. 1 Experimental procedures to examine TRPY1 activities in vivo and in vitro. a Monitoring of TRPY1's response to hypertonic shock in vivo. As described in [2, 10], yeast cells are transformed with plasmids bearing the apoaequorin gene. Transformed yeast cells are then challenged with hypertonic shocks and the Ca2+ release following TRPY1's activation is gauged by aequorin-Ca2+ relative luminescence units (RLUs). b Recording of TRPY1's current triggered by membrane stretch under patch clamp.

Yeast cells are spheroplasted as described before being broken by hypotonic swelling to release vacuoles (V). Released vacuoles are patch clamped in whole-vacuole mode or excised cytoplasmic-side-out mode.

Membrane stretch forces are applied by directly blowing the patches with pressures of tens of millimeter Hg. A representative trace shows TRPY1's response to ~30 mmHg pressure stimulation

mechanical stimulation С directly stimulates directly stimulates Ca²⁺ Ca²⁺ Ca²⁺ TRPV channel TRPV channel Ca²⁺ Unknown mechanical channel mechanical stimulus Ca²⁺ stimulus transduction transduction

J Physiol 567.1 (2005) pp 53-58

SYMPOSIUM REPORT

TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals

Wolfgang Liedtke

Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4

J. Vriens, H. Watanabe, A. Janssens, G. Droogmans, T. Voets*, and B. Nilius

PNAS | January 6, 2004 | vol. 101 | no. 1 396-401

A, the odorant activates the TRPV ion channel via a G protein-coupled receptor mechanism. This happens, e.g. in the ASH sensory neurone of C. elegans in response to 8-octanone, an aversive odorant. The TRPV channel, OSM-9 or OCR-2, is down-stream of the G protein-coupled receptor. Calcium influx through the TRPV channel is an amplification mechanism which is necessary for this signalling pathway. B, one hypothetical scenario where, analogous to A, the TRPV channel functions down-stream of an - as yet unknown - osmotic stimulus transduction apparatus. Intracellular signalling via phosphorylation (dephosphorylation)-dependent pathways activates the channel. For heterologous cellular expression systems, two groups have obtained - contradictory - data that suggest phosphorylation of TRPV4 to be of relevance (Vriens et al. 2003; Xu et al. 2003). C, another hypothetical scenario where the TRPV channel is on top of the signalling cascade. Scenario I and II need not be mutually exclusive. Apart from phosphorylation of the TRPV channel, which could possibly be of relevance in vivo, a direct physical linkage of the TRPV channel to the cytoskeleton, to the extracellular matrix and to the lipids of the plasma

Drosophila visual transduction

Craig Montell

Trends in Neurosciences, June 2012, Vol. 35, No. 6

The story began in Drosophila...

Minireview

Drosophila TRP channels and animal behavior

Melissa A. Fowler, Craig Montell*

Recall signalplexes!

- . Efficiency
- . Specificity
- . Speed
- . Modularity
- . Regulation

Dynamic binding of TRP with INAD. (a) The two cysteines lining the surface groove in INAD PDZ5 are reduced in the dark [84] and [98]. As a consequence, PDZ5 can bind to binding proteins, including the C-terminus of TRP [84]. Light results in oxidation of the two key cysteines in PDZ5, which precludes target binding. (b) In the dark, PDZ4 and PDZ5 interact, thereby promoting the reduced state in PDZ5 [85]. Under these conditions TRP binds to PDZ5 through the C terminus, and to PDZ3 via a separate binding site near the C terminus. Following light stimulation, the PDZ4-PDZ5 interaction is disrupted, leading to oxidation of PDZ5 [85]. This prevents binding of the TRP C terminus to PDZ5. Given that the affinity of the internal binding site in TRP to PDZ3 is weak, binding to PDZ3 may dissociate as a secondary consequence of the oxidation of PDZ5. However, the light-induced impairment of the TRP-PDZ3 interaction is speculative, as indicated by a guestion mark. Abbreviations: INAD, inactivation but no afterpotential D; TRP, transient receptor potential (channel).