### Calcium:



• is a universal intracellular messenger

 is involved in the regulation of virtually all cellular functions

 can be measured in living cells using specific fluorescent/luminescent probes

> THE VERSATILITY AND UNIVERSALITY OF CALCIUM SIGNALLING

Michael J. Berridge, Peter Lipp and Martin D. Bootman

INNOVATION 🧿

### Looking forward to seeing calcium

Rüdiger Rudolf, Marco Mongillo, Rosario Rizzuto and Tullio Pozzan





#### Box 1 | Ca2+ sensors

#### Ratiometric dyes

The excitation (or emission) spectrum (see figure, part a) of ratiometric dyes, such as fura-2 and indo-1, changes according to the free Ca<sup>2+</sup> concentration,  $[Ca^{2+}]$ . The Ca<sup>2+</sup> concentration is measured as the ratio between two fluorescence intensity values that are taken at two wavelengths,  $\lambda 1$  and  $\lambda 2$ . Ratiometric dyes correct for unequal dye loading, bleaching and focal-plane shift, for example, as the ratio does not depend on the absolute intensity of the two signals. This can be illustrated by a simple example: if there are two cells, A and B, that have the same intracellular Ca<sup>2+</sup> concentration,  $[Ca^{2+}]_i$  but different concentrations of the dye, the ratio between the two wavelengths will immediately reveal that their  $[Ca^{2+}]_i$  is identical, whereas a complex calibration procedure would be necessary to obtain the same information with an indicator that only changes its intensity as a function of Ca<sup>2+</sup> concentration.

#### Non-ratiometric dyes

Ca<sup>2+</sup> concentration is determined solely by a relative increase in the fluorescence intensity (see figure, part b) of non-ratiometric dyes, such as fluo dyes and rhod dyes, on elevation of the free Ca<sup>2+</sup> concentration. The single excitation allows for simpler instrumentation or simultaneous observation **b** of other parameters. These dyes mainly work in the visible range.

It should be noted that dyes are available with a range of  $K_d$  values and spectral properties that make them suitable for use at common laser lines, and some of the single-wavelength indicators give extremely strong fluorescence changes on  $Ca^{2+}$  binding. It is also important to note that relative, approximate, and not absolute,  $Ca^{2+}$  concentration values are usually all that is measured. Measuring the Fmin/Fmax or Rmin/Rmax values in cells or tissues requires the exposure of the dye within intact cells to a known  $Ca^{2+}$  concentration by harsh biochemical methods, such as high doses of ionophores, that are often incompatible with cell survival. This is an even bigger problem with probes targeted to organelles. AU, arbitrary units; F, fluorescence intensity; Fmax, F at saturating  $Ca^{2+}$  concentration; Fmin, F at zero  $Ca^{2+}$  concentration;  $K_d$ , dissociation constant; R, ratio between two wavelengths; Rmax, R at saturating  $Ca^{2+}$  concentration; Rmin, R at zero  $Ca^{2+}$  concentration for wavelength two.







Figure 4 | Description of major decisions for the planning of a Ca<sup>2+</sup>-concentration imaging experiment. The flow chart summarizes the main decisions to be made in a typical Ca<sup>2+</sup>-concentration imaging experiment (left column, green) and the corresponding hardware that is available at present for each of these steps (right columns, blue and yellow). At certain points, according to the experimental approach, there are several choices of hardware, which are indicated by forked lines. \*The use of a monochromator increases the time resolution considerably when compared with filter wheel-equipped microscopes. While the costs associated with confocal laser scanning microscopy are considerably higher than those associated with conventional microscopy, the costs associated with multiphoton microscopy are even greater. \*Note that targeted chemical probes are only available in the form of rhod2 for mitochondria. Low-affinity dyes could be used under certain instances for Ca<sup>2+</sup>-concentration measurements in the endoplasmic reticulum. FW, filter wheel; INT, intensity measurement; MC, monochromator; MR, emission ratioing; XR, excitation ratioing.

| Probe                      | Fluorescence | Spectral shift                           | Ca <sup>2+</sup><br>specificity | Toxicity                                | Targetability               | Variable<br>Ca²+ affinity | pH sensitivity             | Molecular<br>mass                     |
|----------------------------|--------------|------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------|---------------------------|----------------------------|---------------------------------------|
| 'Ideal' probe              | Strong       | Yes                                      | High                            | None                                    | Yes                         | Yes                       | None                       | Variable                              |
| Synthetic polycarboxylates | Variable*    | Some yes, but<br>only in the UV<br>range | Good‡                           | In the short<br>term,<br>relatively low | Poor (except for<br>Rhod-2) | Yes                       | Only below<br>about pH 6.5 | Variable§                             |
| GFP-based<br>probe         | Variable     | Some yes, and<br>in the visible<br>range | Good                            | ND                                      | Yes                         | Yes                       | Generally high             | Limited<br>variability<br>(44–83 kDa) |

\*The new generation of polycarboxylates are quite variable in terms of the fluorescence intensities of the Ca<sup>2+</sup>-free and Ca<sup>2+</sup>-bound forms. Some are strongly fluorescent without Ca<sup>2+</sup>, but the changes on Ca<sup>2+</sup> binding are relatively small (for example, Oregon Green), whereas others are very dim without Ca<sup>2+</sup> and the fluorescence increases many times on Ca<sup>2+</sup> binding (for example, fluo-3). <sup>‡</sup>Although the Ca<sup>2+</sup> selectivity over Mg<sup>2+</sup> and monovalent cations of most polycarboxylate indicators is very good, they bind with a significantly higher affinity than other divalent and trivalent cations. <sup>§</sup>Although the molecular mass of all polycarboxylate indicators is about 1 kDa, they can be conjugated to dextrans of different molecular weights. GFP, green fluorescent protein; ND, not determined; UV, ultraviolet.



Interaction with other intracellular pathways (cAMP, InsP3, Nitric oxide, Arachidonic acid...)



**Spatio-temporal restrictions** (compartmentalization, intracellular

distribution and targeting, polarization…)

Physio-pathological effects (fluid secretion, cardiac functions, development of the nervous system, neovascularization...) Intracellular calcium homeostasis at resting conditions is highly compartimentalized and its concentration in the cytosol - [Ca]c - is maintained low (50-100 nM) by energy consumption

passive permation: ion channels ON reactions: cytosolic calcium increases

active permeation: antiporters (NCX) pumps (PMCA and SERCA) OFF reactions: cytosolic calcium decreases





## CALCIUM SIGNALING is the response to external stimula

### Calcium signalling:



CALCIUM SIGNALING is the response to external stimula

Calcium signalling:



2. transduce calcium sensors

3. respond calcium effectors and cell response

# Calcium Signaling

### Martin D. Bootman

The Babraham Institute Babraham Research Campus, Cambridge CB22 3AT, United Kingdom *Correspondence:* martin.bootman@bbsrc.ac.uk





 calcium signature generated by an external stimulus (agonist): channels, pumps, transporters, buffers





3 parameters:

Amplitude

Time course

Spatial distribution

Extracellular agonists usually increase [Ca]c by activation of

1. calcium entry from extracellular medium

Voltage operated channels (Ca<sub>v</sub>)

Voltage independent channels store operated calcium entry (SOCE) store independent calcium entry (NSOCE)

2. calcium release from intracellular stores mediated by intracellular messengers (InsP3...)



### Multiple regulations of calcium channels





### STORE-INDEPENDENT CALCIUM ENTRY (NSOCE)

STORE-DEPENDENT CALCIUM ENTRY (SOCE)



Journal of Pharmacological Sciences © The Japanese Pharmacological Society

#### Current Perspective

#### Key Components of Store-Operated Ca<sup>2+</sup> Entry in Non-Excitable Cells

Yosuke Tojyo<sup>1,2,\*</sup>, Takao Morita<sup>1</sup>, Akihiro Nezu<sup>1</sup>, and Akihiko Tanimura<sup>1</sup>

<sup>1</sup>Department of Pharmacology, <sup>2</sup>Laboratory of Biophysics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan







**Fig. 2.** Rearrangement of STIM1 and Orai1 following store depletion. In panel A, HSY cells expressing YFP-STIM1 were stimulated with ATP in Ca<sup>2+</sup>-free medium. In panel B, COS-7 cells expressing Venus-Orai1 were stimulated with cyclopiazonic acid (CPA), an ER Ca<sup>2+</sup> pump inhibitor, in Ca<sup>2+</sup>-free medium. Modified from Ref. 38 with permission.

### YFP-stim1 interacts with plasma-membrane: TIRF



Biochemical and Biophysical Research Communications 460 (2015) 40-49



Contents lists available at ScienceDirect

### Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

#### Review

#### Store-operated calcium entry: Mechanisms and modulation



#### Patrick G. Hogan<sup>\*</sup>, Anjana Rao

La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA



**Fig. 1.** Cartoon view of STIM1 in an extended conformation, bridging the distance from ER to plasma membrane. For clarity, a single STIM monomer is shown, but the active extended form in cells is oligomeric. Functional regions of STIM discussed in the text are the calcium-sensing EF-SAM domain in the ER lumen, the cytoplasmic CC1 region that both stabilizes inactive STIM and transmits the activating conformational change upon ER calcium store depletion, the SOAR/CAD domain that recruits and gates ORAI channels, and the polybasic tail that interacts with plasma membrane phosphoinositides.



**Fig. 2.** Cartoon view of the ORAl1 channel. Only two subunits of the hexameric channel are depicted. Labelled are the pore-lining transmembrane helices (TM1), the E106 residues that form a calcium-binding site, the nonpolar region of the pore that constitutes the main barrier to ion flux, and the C- and N-terminal cytoplasmic segments that interact with STIM proteins.



## Signalplexes are DYNAMIC



# Store-operated calcium entry (SOCE)

## Not only orail but also TRP channels...redundancy and

## variability





Jose J. Lopez<sup>a</sup>, Letizia Albarran<sup>a</sup>, Luis J. Gómez<sup>a</sup>, Tarik Smani<sup>b</sup>, Gines M. Salido<sup>a</sup>, Juan A. Rosado<sup>a,\*</sup>

<sup>a</sup> Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003 Cáceres, Spain
<sup>b</sup> Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, Sevilla, Spain







Modeling the interactions between KCa1.1 and calcium influx through either Cav3 or Cav2 calcium channels. A, Description of voltage- and Ca<sup>2+</sup>-dependence of the KCa1.1 channel and its activation by domains of calcium increase. The magnitude (B) and kinetics (C) of KCa1.1 activation are governed by the distance and number of Cav channels.



### HAIR CELLS



# Polarity in intracellular calcium signaling

#### Ole H. Petersen,\* Denis Burdakov, and Alexei V. Tepikin



**Figure 1.** Schematic drawing of a pancreatic acinar cell showing its polarized structure together with the major transport pathways responsible for  $Ca^{2+}$  movements in the various parts of the cell. Mite, mitechondria: EP, ordeplasmic ratio



# Exocytosis, dependent on Ca<sup>2+</sup> release from Ca<sup>2+</sup> stores, is regulated by Ca<sup>2+</sup> microdomains

Jiun T. Low, Alka Shukla, Natasha Behrendorff and Peter Thorn\* School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia \*Author for correspondence (p.thorn@ug.edu.au)



**Fig. 1.**  $Ca^{2+}$  responses within an acinus to CCK stimulation. Cells were loaded with Fura-2 and stimulated by the addition of 20 pM CCK to the bathing solution. (A) Within an acinus, individual cells asynchronously show a rise in  $[Ca^{2+}]$ . (Top and middle rows) Top row: Fura-2 response (F<sub>0</sub>-F/F<sub>0</sub> in pseudocolor) at individual time points (i–vii, indicated on the graph in B) throughout the response (blue, low  $[Ca^{2+}]$ , to red, high  $[Ca^{2+}]$ ). The cell in the upper left responds first, followed sequentially by the other three cells in the group. Middle row: SRB fluorescence (red) that surrounds the cells and diffuses into the lumen between cells. Individual exocytic fusion events, observed as SRB dye enters the granules are seen in the last three images (v–vii). The boxed area in the first image of the middle row indicates the area that is shown enlarged in the four black and white images (a–d). These images show individual exocytic events at time points a–d (arrowheads), indicated on the bottom graph in B. (B) Exocytic events follow the Ca<sup>2+</sup> signals. (Top graph) Average Fura-2 ratiometric response in ROIs within each of the cells (color-coded for each cell, shown in image I in A). (Bottom graph) Time-course of the SRB dye signals in ROIs placed over each individual granule that undergoes fusion (dots above the graph indicate the times of the peaks of each exocytic event). (C) Within a single cell, the Ca<sup>2+</sup> response is seen as a wave spreading from apical to basal region. The enlarged images show a time sequence of images (0.2 second time intervals) from the lower left-hand cell (shown in A). The Ca<sup>2+</sup> wave initiates in the apical region (red circle) and then spreads to the basal region (green circle). Scale bar: 10 µm. The graph shows average ratiometric fluorescence changes in each ROI (red, yellow, green) plotted against time. The Ca<sup>2+</sup> signal rises first in the apical region.

3201



Fig. 5. Identification of the site of origin of the Ca<sup>2+</sup> wave. Cells stimulated with 20 pM CCK show the Ca2+ signal starting at the apical pole and then spreading out across the cell. (A) Fura-2 responses (F<sub>0</sub>-F/F<sub>0</sub> ratio in pseudocolor) from a CCK-evoked Ca<sup>2+</sup> response in a single cell within a pancreatic fragment. (B) Full sequence of still images from a movie (five frames per second) taken as the Ca<sup>2+</sup> response spreads across the cell. (C) Same cell as in B, enlarged (at the very first movie frame that shows the start of the Ca<sup>2+</sup> response) with four ROIs of  $3 \times 3 \,\mu m$ (boxed areas) centered around the origin of the Ca<sup>2+</sup> response. (D) The main graph is the magnification of the gray-shaded area in inset graph, showing the average fluorescence within each of the ROIs shown in C. The red ROI rises earlier and faster than the surrounding ROIs; for this cell, this region is therefore identified as the point of origin of the Ca<sup>2+</sup> response.



Fig. 9. Local Ca<sup>2+</sup> spikes do not induce exocytosis. (A-B) Upper row of images in A: Fura-2 Ca2+ responses (F0-F/F0) following stimulation with CCK taken at different time points (i-v; indicated in B). Shown are two consecutive, short-lasting Ca2+ spikes that are locally restricted to the apical region (red circle). Lower row of images in A: SRB fluorescence (red). Throughout the occurrence of these local Ca2+ spikes there is no change in the SRB signal and no indication of any exocytic events. (B) The large Fura-2 ratiometric changes in the cell from a region of interest placed in the apical pole (red) compared with very little change in a region placed in the basal pole (green). (C) The full sequence of images (and the associated graph of average fluorescent changes) taken over the first local Ca2+ response clearly shows the spatially restricted nature of the signal.

Invited review

Cell Calcium (1999) **26** (5), 201–208 © Harcourt Publishers Ltd 1999 Article No. ceca, 1999.0073

# Calcium signal transduction from caveolae

M. Isshiki, R.G.W. Anderson







**Fig. 2** Three mechanisms (A, B, C) for how caveolae might regulate Ca<sup>2+</sup> wave initiation. See text for a description. A: agonist; R: receptor; PLC: phospholipase C; Gq: heterotrimeric  $G_{\alpha q}$ ; PIP<sub>2</sub>: phosphatidylinositol 4,5-bisphosphate; IP<sub>3</sub>: inositol 1,4,5-trisphosphate; IP<sub>3</sub>RLP: IP<sub>3</sub> receptor-like protein; ER: endoplasmic reticulum; PM: plasma membrane. Electric stimulation of a cardiomyocyte triggers elementary events and then a global calcium wave



### Calcium signalling:

perceive spatiotemporal pattern of calcium changes
 transduce calcium sensors
 respond calcium effectors and cell response

### EF HANDS: hlh (12-12-12 aa) loop of 12 aa in which 6 aa are critical for Ca binding C-term EF hand Kd 10-7 (higher affinity and binds some targets at rest) N-term Kd 10-6: good sensor

### **Calcium-binding domains**

**C2-DOMAIN:** PLC (+1 EF-hand motif), PKC, synaptotagmins (Syn) 8-stranded b-sandwich type I Syn type II PLC circular permutation (1 strand of type I is the last in type II)



#### Figure 1. Oxygen Atoms of Amino Acids Chelate Ca<sup>2+</sup>

(A) Ca<sup>2+</sup> is coordinated by seven oxygen atoms (five in the plane of the orange pentagon and two perpendicular to the plane, thus forming a bipyramidal pentagon). Adapted from the EF hand calcium-binding proteins data library (http://structbio.vanderbilt.edu/chazin/cabp\_ database).

(B) Calmodulin has four EF-hand motifs, each with distinct affinities for Ca<sup>2+</sup>, two at each end of a long jointed  $\alpha$  helix. Ca<sup>2+</sup> binding to calmodulin exposes hydrophobic surfaces. A helical peptide from myosin light chain kinase is colored red. This extended conformation is not stable in solution, but illustrates calmodulin's domains (constructed with Pymol using PDB 3CLN). The red helix represents a hypothetical target peptide.

(C) Ca<sup>2+</sup>-bound calmodulin wraps around basic amphipathic helices of proteins. Adapted from the EF-Hand Calcium-Binding Proteins Data Library (http://structbio.vanderbilt.edu/cabp\_database/cabp.html).

(D) C2 domains bind Ca<sup>2+</sup> in variable loops containing negatively charged amino acids. The scaffold is an antiparallel  $\beta$  sandwich with an exposed protein-interaction surface. The dashed blue line is the hypothetical plasma membrane (C2 domain of protein kinase C  $\beta$ . PDB 1a25 from the OPM database; http://opm.phar. umich.edu).

### CALMODULIN

CaM 148 aa (16 Kd) in all eucaryotic cells Higher vertebrates: 3 genes highly conserved 4 EF hands CaMBdomain (higher affinity, nM) of CaMBP: 20aa

CaMBP: GC, AC, PDE, NOS, kinases (CaMK (I-V), EFK, IP3K, MLCK), phosphatases (PP2B or calcineurin) RNA processing: Smad 1 and 2 Cytoskeleton rearrangement: MAP-2, Tau, spectrin, caldesmon Plasmamembrane: MARCKS, neuromodulin, neurogranin PMCA (and via CaMKs SERCA)

Mechanism of activation: inhibition release for CAMKII and calcineurin

Biochemical and Biophysical Research Communications **290**, 615–623 (2002) doi:10.1006/bbrc.2001.6228, available online at http://www.idealibrary.com on **IDE AL**®

#### BREAKTHROUGHS AND VIEWS

### Calcium-Binding Proteins: Intracellular Sensors from the Calmodulin Superfamily

Françoise Haeseleer,\* Yoshikazu Imanishi,\* Izabela Sokal,\* Sławomir Filipek,† and Krzysztof Palczewski\* $\ddagger\$^1$ 

\*Department of Ophthalmology, ‡Department of Chemistry, and §Department of Pharmacology, University of Washington, Seattle, Washington 98195; and †Department of Chemistry, University of Warsaw, 1 Pasteur Street, PL-02093 Warsaw, Poland



|        | Nt    | EF1          | EF2            | CENTRAL HELIX                  | EF3          | EF4              |
|--------|-------|--------------|----------------|--------------------------------|--------------|------------------|
|        |       | 1 12         | -2 12          |                                | 1 12         | 1 12             |
| hCaM   | MADQL | DKDGDGTITTKE | DADGNGTIDFPE   | FLTMMARKMKDTDSEEEIREAFRVF      | DKDGNGYISAAE | DIDGDGQVNYEE     |
| hTropC | MTDQQ | DADGGGDISVKE | DEDGSGTIDFEE   | FLVMMV-RQMKEDAK-GKSEEELAECFRIF | DRNADGYIDPGE | DKNNDGRIDFDE     |
| hCaBP1 | MENCV | DKDKDGYINCRD | QINMNLGGHVDFDD | FVELMGPKLLAETAD-MIGVKELRDAFREF | DTNGDGEISTSE | DLNGDGRVDFEE     |
| mCaBP1 | MGNCV | DKDKDGYINCRD | QINMNLGGHVDFDD | FVELMGPKLLAETAD-MIGVKELRDAFREF | DINGDGEISISE | DINGDGRVDFEE     |
| hCaBP5 | MOFPM | DKDRDGFISCKD | QIRMNLGGRVDFDD | FVELMTPKLLAETAG-MIGVQEMRDAFKEF | DINGDGEITLVE | DVNGDGTVDFEE     |
| mCaBP5 | MQFPM | DKDQDGFISYKD | QIRMNLGGRVDFED | FVELMTPKLLAETAG-MIGVQEMRDAFKEF | DANGDGEITLAE | DINGDGTVDFEE     |
| hCaBP2 | MENCA | DRDQDGYIGCRE | QISGGKVDFED    | FVELMGPKLLAETAD-MIGVRELRDAFREF | DTNGDGRISVGE | DINGDGLVDFEE     |
| mCaBP2 | MGNCA | DRDRDGYIGYRE | QISGGKVDFED    | FVELMGPKLLAETAD-MIGVRELRDAFREF | DINGDGCISVGE | DINGDGLVDFEE     |
| hCaBP4 | MTTEQ | DTDRDGYISHRE | HIKMRMGGRVDFEE | FVELIGPKLREETAH-MLGVRELRIAFREF | DRDRDGRITVAE | DINGDGTVDFDE     |
| mCaBP4 | MATEH | DTDQDGYIGYRE | HVKMRMGGFVDFEE | FVELISPKLREETAH-MLGVRELRIAFREF | DKDRDGRITVAE | DINGDGTIDFDE     |
| hCaBP8 | MPFHH | DRDGNGFISKQE | DMDGDGQVDFDE   | TILGPKLVSSEGRDGFLGNTIDSIFWQFQF | DMQRITLEEQF  | NEEESLNETMAFIISV |
| mCaBP8 | MPFHH | DRDGNGFISKQE | DMDGDGQVDFDE   | TILGPKLVSSEGRDGFLGNTIDSIFWQFQF | DMQRVTLEEQF  | NEEESLNETMAFIISV |
| CaBP7  | MPFHP | DRDGNGFISKQE | DMDGDGQVDFEE   | TLLGPKLSTSGIPEKFHGTDFDTVFWKCKC | DMQKLTVDEKC  | TEEESHLGTIAFIISV |

**FIG. 4.** Amino acid sequence alignment of Homo sapiens (prefix h) and *Mus musculus* (prefix m) CaBPs. The four potential EF hand motifs (EF1–4) represent high affinity  $Ca^{2+}$  binding sites. Nonfunctional EF hands are shaded. Potential N-myristoylation sites in CaBP1 and CaBP2 are printed white on black. Central helix in CaM is known to undergo major conformational changes upon  $Ca^{2+}$  coordination. hTropC, human troponin C.





Biochimica et Biophysica Acta 1600 (2002) 51-60

#### Review

BIOCHIMICA ET BIOPHYSICA ACTA

www.bba-direct.com

# Structures, functions and molecular evolution of the penta-EF-hand Ca<sup>2+</sup>-binding proteins

#### Masatoshi Maki\*, Yasuyuki Kitaura, Hirokazu Satoh, Susumu Ohkouchi, Hideki Shibata

Laboratory of Molecular and Cellular Regulation, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Received 15 June 2002; accepted 20 September 2002



| and the second second |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |
|                       |  |  |

| Human<br>ALG-2                   | MAAYSYRPGPGAGPGPAAGAALP - 23                                                                                                                                                                            |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| peflin                           | MAS YP TROGC PGAAGOAPGAPPGSYYPGPPNSGCOYGSG PPGGGYGGPA<br>PGGPYGPPAGGGPYGHPNPGMEPSGTPGGPYGGAAPGGPYGQPPPSSY GA<br>QQPGLYGQGGAPP-113                                                                       |
| calpain small<br>subunit (CAPNS) | MFLYNSELIKGGCGCGCGCGCGGGCGCGGGGGGGGGGGGGGGGGGGG                                                                                                                                                         |
| sorcin                           | MAMPGHPGAGGGYYPGGYGGAPGGPAFPG-29                                                                                                                                                                        |
| grancalcin<br><b>Drosophila</b>  | MAMPGYGGGEGNESIIQVPGMQMGQPVPETGPAILLDGMSGPAM-43                                                                                                                                                         |
| ALG-2                            | MAMNHDGM-8                                                                                                                                                                                              |
| peflin<br><b>C. elegans</b>      | MSYGQGYNPYAOPGGGYAPPPGAFPP-26                                                                                                                                                                           |
| ALG-2                            | MAEQQP-6                                                                                                                                                                                                |
| Arabidopsis                      |                                                                                                                                                                                                         |
| At PEF-A                         | MSGW PPSSQCWQGWGGNPPPPQPYQSTGNNPPPWQSSGSNPPPPWQSSAS<br>SPYAVPYGAQPAPYGAPPSAPYASUPGDHNKPHKEKPHGASWGSPSPGGY<br>GAHPSSGPSDWGGWGGAPQQSGHGGGYGGAPQQSGHGGGWGAPPPQASWG<br>SPHASUVPSAHPPGT - 165                |
| At PEF-B                         | NSCYPPTSQCYCKCCCCCOPPPPOPP SSGCNNPPKCSSTTSSPNAVP<br>Gaskrossssatt vgsssigappsavpapson nepkceprocomg<br>Apppscsspncsvcscopresopschecorg appphendisdics ggappep<br>Asschoggyggppdasygspasites cappg - 183 |
| Budding yeast                    |                                                                                                                                                                                                         |
| Sc PEF                           | TRVHSAPIPLQTQYNKNRAENGHHSYGSPQSYSPRHTKTPMDPRYNVIAQ                                                                                                                                                      |
| (YGR058w)                        | KPAGRPIPPAPTHYNNLNTSAQRIASSPPPLIHNQAVPAQLLKKVAPAS                                                                                                                                                       |
| Cellular slime mold              | DSRE-154                                                                                                                                                                                                |
| DdPEF-1                          | MMSYGYQQTPIVAPPAKEQALWEYSEY-27                                                                                                                                                                          |
| DdPEF-2                          | MYGYGY TPAVVAPTVMSESEVPPQAEQQCWEYSLY-35                                                                                                                                                                 |
| Entamoeba                        | •                                                                                                                                                                                                       |
| Eh grainin 1                     | MSLFATQAAADAWVALHIITAAYQADPLIQREWWYPLA-37                                                                                                                                                               |
| Eh grainin 2                     | MSLEALQAAADAEVITQMIOAAVNSDPNLKEQWWEPLV-37                                                                                                                                                               |
| <i>Leishmania</i><br>Lm PEF      | MGDWYPGYGCPQAPQGYRANPMYDGQQPASYPATAGSUGGGAYAPPQYPA<br>PPE IV-55                                                                                                                                         |

Fig. 1 (continued).

### Table 1Presence of PEF protein genes in eukaryotes

| PEF genes             | Protists | Plants | Fungi | Nematode | Fruit fly | Mammals |
|-----------------------|----------|--------|-------|----------|-----------|---------|
| Group I               |          |        |       |          |           |         |
| ALG-2 or              | +        | +      | +     | +        | +         | +       |
| analogous<br>proteins |          |        |       |          |           |         |
| peflin                | _        | _      | _     | _        | +         | +       |
| Group II              |          |        |       |          |           |         |
| calpain large         | _        | _      | _     | _        | +         | +       |
| subunit with          |          |        |       |          |           |         |
| PEF domain            |          |        |       |          |           |         |
| small subunit         | _        | _      | _     | _        | _         | +       |
| sorcin                | _        | _      | _     | _        | _         | +       |
| grancalcin            | _        | _      | _     | _        | _         | +       |

Penta EF hand (PEF) proteins (calpain, peflin, ALG-2, sorcin, grancalcin...) all eucaryotes Calpains: cystein proteases Sorcin: modulation of calcium channels





Fig. 3. Interacting protein relationship involving ALG-2. Proteins with known binding regions are shown. PxxP, a core motif for SH3 binding; SH2, Src homology 2; TKB, tyrosine kinase-binding domain; RF, ring finger domain functioning as ubiquitin ligase; Ryr, ryanodine receptor; PGAYQ and GYP, anino acid composition biased regions for potential binding to ALG-2 and sorcin, respectively; BLNK, B cell linker protein [85]. LNT domains of the PEF proteins are colored in red.

#### doi:10.1016/j.jmb.2003.08.052

J. Mol. Biol. (2003) 333, 621-639

JMB



Functional Recycling of C2 Domains Throughout Evolution: A Comparative Study of Synaptotagmin, Protein Kinase C and Phospholipase C by Sequence, Structural and Modelling Approaches

José L. Jiménez<sup>1,2\*</sup>, Graham R. Smith<sup>2</sup>, Bruno Contreras-Moreira<sup>2</sup> John G. Sgouros<sup>1</sup>, Frederic A. Meunier<sup>3</sup>, Paul A. Bates<sup>2</sup> and Giampietro Schiavo<sup>4</sup>



Figure 8. Functional recycling of C2 domains. The Figure shows the functional diversity for C2 domains present in several proteins. (a) An atomic model of Syt I shows the conserved and divergent patches identified by 3D cluster analysis. The different potential steps during Syt action are depicted underneath. The C2 domains are represented as rectangles with a triangular cavity for the calcium-binding site. C2B also presents indentations at one side, which correspond to the lysine-rich region. The membrane is represented as a grey-filled rectangle and the calcium ions as black triangles. The double arrow close to C2B indicates that its binding to the membrane is weak and probably transient. (b–d) Represent models of action for  $\delta$ , plant and β-PLCs, respectively. The β-PLC model (d) is very simplified and omits the C-terminal region after the C2 domain that is also known to interact with G-proteins on the membrane.





Available online at www.sciencedirect.com

**GENOMICS** 

Genomics 84 (2004) 10-22

www.elsevier.com/locate/ygeno

#### Probing the S100 protein family through genomic and functional analysis

Timothy Ravasi,<sup>a,b,\*</sup> Kenneth Hsu,<sup>c</sup> Jesse Goyette,<sup>c</sup> Kate Schroder,<sup>a</sup> Zheng Yang,<sup>c</sup> Farid Rahimi,<sup>c</sup> Les P. Miranda,<sup>b,1</sup> Paul F. Alewood,<sup>b</sup> David A. Hume,<sup>a,b</sup> and Carolyn Geczy<sup>c</sup>

<sup>a</sup> SRC for Functional and Applied Genomics, CRC for Chronic Inflammatory Diseases, University of Queensland, Brisbane 4072, QLD, Australia <sup>b</sup> Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia <sup>c</sup> Cytokine Research Unit, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia

Received 25 November 2003; accepted 2 February 2004

Available online 10 May 2004





#### Mouse nucleotide Mouse Chr/band Rat nucleotide Rat Human nucleotide Human Proposed gene symbol accessions No. accessions No. Chr/band accessions No Chr/band S100A1 NM\_011309 3f2 S68809 2q34 NM\_006271 1q21.3 \$100A2 No match<sup>4</sup> No match No match NM 005978 1q21.3 No match S100A3 NM\_011310 3f2 NM\_053681 2a34 NM\_002960 1a21.3 S100A4 XM\_283861 3f2 NM\_012618 2q34 NM\_019554 1q21.3 S100A5 NM\_011312 3f2 AF087469 2q34 NM\_002962 1q21.3 S100A6 NM\_011313 3f2 NM\_053485 2q34 NM\_014624 1q21.3 S100A7a Kulski J.K. 3f2 Kulski J.K. 2q34 XM\_048124 1q21.3 et al. 2003 et al. 20003 S100A7b Kulski J.K. 3f2 Kulski J.K. 2q34 XM\_060509 1q21.3 et al. 2004 et al. 20004 S100A7c Kulski J.K 3f2 Kulski J.K. 2q34 NM\_002963 1q21.3 et al. 2005 et al. 20005 S100A7d Kulski J.K. 3f2 Kulski J.K. 2q34 XM\_060508 1q21.3 et al. 2006 et al. 20006 S100A7e Kulski J.K 3f2 Kulski J.K. 2q34 Kulski J.K. 1q21.3 et al. 2007 et al. 20007 et al. 20003 S100A8 NM\_013650 3f2 NM\_053822 2q34 NM\_002964 1q21.3 S100A9 NM\_009114 3f2 NM\_053587 2q34 NM\_002965 1q21.3 S100A10 NM\_009112 3f2 NM\_031114 2q34 NM\_002966 1q21.3 \$100A11 NM\_005620 362 XM\_215598 3q34 MM41341 1q21.3 S100A12 No match No match No match No match NM\_005621 1a21.3 S100A13 NM\_009113 3f2 ENSRNOT0000016519 2q34 X99920 1q21.3 S100A14 NM\_025393 3f2 RNOR01075109 2q34 NM\_020672 1q21.1 S100A15 (2300002L21Rik)<sup>b</sup> NM\_026416 3f2 ENSRNOT0000016499 2q34 NM\_080388 1q21.3 S100A17 (5430400H23Rik)b NM\_027762 3f2 XM\_227375 2q34 XM\_060104 1q21.3 S100A16 (A530063N20Rik)<sup>b</sup> AK041026 3f2 ENSRNOT0000012771 2q34 AL356504 1q21.3 Profilaggrin AF510860 3f2 AY102923 2q34 M60500 1q21.3 NM 009100 3f2 XM\_227371 2q34 AL589986 1q21.3 Repetin ENSRNOT0000001184 Calneuron1 NM\_021371 5f 12q16 NM\_031468 7q11.22 Calcium binding NM\_013879 5f NM\_133529 12q16 NM\_004276 12q24.31 protein-1 (CaBP1) Troponin T3 NM\_011620 7f5 M15202 1q37 NM\_006757 11p15.5 1q12 19q13.42 Troponin I NM\_009406 7a1 NM\_017144 NM\_000363 Troponin T1 NM\_011618 7a1 NM\_134388 No match NM\_003283 19q13.42 ENSRNOT0000020090 Calcium binding NM\_013877 7a2 1q12 NM\_019855 19q13.33 protein-5 (CaBP5) NM\_013878 ENSRNOT0000024770 1q41 NM\_031204 Calcium binding 19a 11q13.3 protein-2 (CaBP2) Calcium binding NM\_144532 19a Not available No match AC005849 11q13.3 protein-4 (CaBP4) Troponin T2 NM\_011619 1f NM\_012676 13q13 NM\_000364 1q32.1 Troponin C NM\_009394 2h3 ENSRNOT0000020348 3q42 NM\_003279 20q13.12 Hippocalcin NM\_010471 4d2.3 NM\_017122 6q14 NM\_002143 1p35.1 S100 beta NM\_009115 10b5.3 NM\_013191 20p12 NM\_006272 21q22.3 Calcium binding NM\_138948 11a1 ENSRNOT0000010439 14q21 ENST00000216144 22q12.2 protein-7 (CaBP7) Calmodulin NM\_007589 12f1 NM\_012518 6q31 NM\_001743 14q32.11 S100zeta XM\_176783 13d1 ENSRNOT0000024202 2q12 NM\_130772 5q13.3 1700028N11Rik<sup>b</sup> NM\_029341 15a2 ENSRNOT0000023378 2q16 BC017596 5p13.2 Parvalbumin-alpha NM\_013645 15e2 NM\_002854 22q12.3 NM\_022499 7q34 Xp22.13 Calbindin D-9k NM 009789 Xf3 NM\_012521 Xq32 NM\_004057 Trichohyalin XM\_195464 3f2 XM\_227373 2q34 L09190 1q21 S100P No match No match No match No match NM\_005980 4p16.1

The genomic location was determined by blasting the corresponding transcripts against the assembly of mouse whole-genome sequence data as described in Materials and methods. Newly described \$100 proteins are presented in boldface.

a "No match" indicates those genes that we failed to detect in the respective genome.

<sup>b</sup> Newly described members of the EF-hand superfamily.

Review

Full text provided by www.sciencedirect.com

# Neuronal Ca<sup>2+</sup>-sensor proteins: multitalented regulators of neuronal function

Robert D. Burgoyne, Dermott W. O'Callaghan, Burcu Hasdemir, Lee P. Haynes and Alexei V. Tepikin

Table 1. The NCS and CaBP families of Ca<sup>2+</sup>-sensor proteins<sup>a</sup>

The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK

| Protein       | Class | Expression in brain or retina | N-terminal myristovlation | Splice variants              |
|---------------|-------|-------------------------------|---------------------------|------------------------------|
| NCS proteins  | Clubb |                               |                           |                              |
|               | ۸     | Proin and rating              | Vac                       | Nene                         |
| NC5-1         | A     |                               | res                       | None                         |
| Hippocalcin   | в     | Brain                         | Yes                       | None                         |
| Neurocalcin δ | В     | Brain and retina              | Yes                       | None                         |
| VILIP-1       | В     | Brain and retina              | Yes                       | None                         |
| VILIP-2       | В     | Brain                         | Yes                       | None                         |
| VILIP-3       | В     | Brain                         | Yes                       | None                         |
| Recoverin     | С     | Retina                        | Yes                       | None                         |
| GCAP1         | D     | Retina                        | Yes                       | None                         |
| GCAP2         | D     | Retina                        | Yes                       | None                         |
| GCAP3         | D     | Retina                        | Yes                       | None                         |
| KChIP1        | E     | Brain                         | Yes                       | 1a, 1b                       |
| KChIP2        | E     | Brain                         | No                        | 2, 2a, 2b                    |
| KChIP3        | E     | Brain                         | No                        | ?                            |
| KChIP4        | E     | Brain                         | No                        | 4a, 4b                       |
| CaBP proteins |       |                               |                           |                              |
| Caldendrin    | CaBP  | Brain and retina              | Yes and No <sup>b</sup>   | Caldendrin, L-CaBP1, S-CaBP1 |
| CaBP2         | CaBP  | Retina                        | Yes                       | L-CaBP2, S-CaBP2             |
| CaBP3         | CaBP  | Retina                        | No                        | None                         |
| CaBP4         | CaBP  | Brain and retina              | No                        | None                         |
| CaBP5         | CaBP  | Retina                        | No                        | None                         |

<sup>a</sup>Abbreviations: CaBP, Ca<sup>2+</sup>-binding protein; GCAP, guanylyl-cyclase-activating protein; KChIP, K<sup>+</sup>-channel-interacting protein; L-CaBP, long form of Ca<sup>2+</sup>-binding protein; NCS, neuronal Ca<sup>2+</sup> sensor; S-CaBP, short form of Ca<sup>2+</sup>-binding protein; VILIP, visinin-like protein. <sup>b</sup>L-CaBP1 and S-CaBP1 have N-terminal myristoylation motifs but caldendrin does not.



**Figure 2**. Neuronal Ca<sup>2+</sup> sensor (NCS) proteins: the Ca<sup>2+</sup>-myristoyl switch and their intracellular localization. (a) The structures of the Ca<sup>2+</sup>-free (left) and Ca<sup>2+</sup>-bound (right) forms of recoverin, demonstrating how the binding of two Ca<sup>2+</sup> ions (green spheres) leads to a conformational change in recoverin [23,24], exposure of the myristoyl group and subsequent membrane association of the protein via the myristoyl group. (b) Intracellular distribution of NCS proteins in cells before (top) or after (bottom) Ca<sup>2+</sup>-level elevation. NCS-1 (dark blue) and K<sup>+</sup>-channel-interacting protein (KChIP)1 (green) are examples of NCS proteins that are membrane-associated at resting Ca<sup>2+</sup> concentrations (although they associate with the membranes of different organelles) [29]. Other NCS proteins (red) that possess the Ca<sup>2+</sup>-myristoyl switch translocate to membrane structures only after elevation of Ca<sup>2+</sup> concentration [25,27–29]. Active Ca<sup>2+</sup>-bound forms of the proteins are indicated by asterisks.

Biochem. J. (2001) 353, 1-12 (Printed in Great Britain)



1

### **REVIEW ARTICLE The neuronal calcium sensor family of Ca<sup>2+</sup>-binding proteins**

Robert D. BURGOYNE<sup>1</sup> and Jamie L. WEISS

The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K.



#### Figure 2 Evolutionary relatedness of the human NCS proteins

A consensus maximum parsimony tree based on the human NCS family members in Figure 1 is shown that was generated using the University of Wisconsin Genetics Computer Group version of the program PAUP [121]. The strict case of 100 maximum parsimony trees is depicted. The consistency index for each of the individual most parsimonious tree used to construct the consensus tree was 0.8.

### Calcium signalling:



# Calcium oscillations increase the efficiency and specificity of gene expression

Ricardo E. Dolmetsch\*†, Keli Xu\* & Richard S. Lewis





# Oocyte fertilization

LINDSAY, HERTZLER, AND CLARK  $Mg^{2+}$ -Induced  $Ca^{2+}$  Wave

99



FIG. 6. Wave of fluorescence moving across a Fluo-3-loaded oocyte in MgFSW after the application of MgCl<sub>2</sub> solution to the edge of the microinjection chamber. (A) Transmitted light image of the oocyte; bar = 100  $\mu$ m. (B-E) Confocal microscope images showing the progression of the activation wave; B = 0 time (wave first detected); C = 5 sec; D = 13 sec; E = 23 sec. The oocyte surface is irregular due to the presence of extracellular crypts containing the jelly precursor; jelly release is also a Mg<sup>2+</sup>-dependent process (Clark *et al.*, 1984).

• From Lindsay et al. (1992). Extracellular Mg<sup>2+</sup> Induces an Intracellular Ca<sup>2+</sup> Wave During Oocyte Activation in the Marine Shrimp *Sicyonia ingentis*. Dev. Biol. 152:94–102.



# **Polarity in intracellular calcium signaling**

#### Ole H. Petersen,\* Denis Burdakov, and Alexei V. Tepikin





5774

#### Polarization of Calcium Signaling and Fluid Secretion in Salivary Gland Cells

#### I.S. Ambudkar\*

Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892





### Regulation of Cell Cycle Progression by Calcium/ Calmodulin-Dependent Pathways

CHRISTINA R. KAHL AND ANTHONY R. MEANS

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710



### Endothelial cells and angiogenesis: an intriguing model



