Cell Membrane

FLUID MOSAIC MODEL

FLUID- because individual phospholipids and proteins can move side-to-side within the layer, like it's a liquid.

MOSAIC- because of the pattern produced by the scattered protein molecules when the membrane is viewed from above.

The Fluid Mosaic Model of the Structure of Cell Membranes

Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids.

S. J. Singer and Garth L. Nicolson

720 - 731

Functions of Plasma Membrane

- \checkmark Protective barrier
- Regulate transport in & out of cell (selectively permeable)
- \checkmark Allow cell comunication and signaling

 ✓ Provide anchoring sites for extracellular matrix and cytoskeleton (cell adhesion, migration...) Membranes separate different environments:

ASIMMETRY / GRADIENTS

maintained through energy consumption (OPEN SYSTEM)

COMPOSITION OF BODY FLUIDS

CATIONS (mmol/l)	Plasma	Interstitial	Intracellular
Na	142	139	14
К	4.2	4.0	140
Ca	1.3	1.2	0
Mg	0.8	0.7	20
ANIONS (mmol/l)			
СІ	108	108	4.0
НСО3	24.0	28.3	10
Protein	1.2	0.2	4.0
HPO4	2.0	2.0	11

Concentration, mM				
lon	Plasma	Cytosol	Seawater	
Na+	135~146	25~35	480	
K+	3.5~5.2	130~145	10.4	
Mg2+	0.8~1.4	4~20	54	
Ca2+	2.1~2.7	< 0.01	10.6	
CI-	98~108	50~60	559	
HCO3-	23~31	4~12	54	
PO42-	0.7~1.4	90~110	< 0.1	

Physiol. Rev. 86(2006), 1049

Table 1: Ionic Concentrations (mM) in SBF and Human Plasma.								
	Na ⁺	K⁺	Mg ⁺²	Ca ⁺²	Cľ	HCO3.	HPO4 ⁻²	SO4 ⁻²
Plasma	142.0	5.0	1.5	2.5	103.0	27.0	1.0	0.5
SBF	142.0	5.0	1.5	2.5	147.8	4.2	1.0	0.5

Fluxes through the membranes are required (open system) but strictly <u>controlled</u>

Polar heads are hydrophilic "water loving" Nonpolar tails are hydrophobic "water fearing" make membrane "Selective" in what crosses

SELECTIVELY PERMEABLE:

Controls what comes **in and out** of the cell. Does not let **large**, **charged** or **polar** things through without help.

Head is POLAR & contains a -PO₄ group & glycerol

2 NONPOLAR fatty acid chains

Fluxes across the membranes depend on:

- The gradient (the driving force)

 chemical for uncharged particles (see Fick's laws)
 electrochemical for ions (see Nernst's law)
- 2. The membrane permeability

$$J = -D\frac{dc}{dx} \qquad \text{I FICK'S LAW} \qquad J = -D(\frac{dc}{dx} + c\frac{zF}{RT}\frac{d\varphi}{dx}) \qquad \text{NERNST-PLANCK}$$

$$J = P_m \Delta c$$

<u>Small</u> molecules and <u>larger hydrophobic</u> molecules move through easily. e.g. O_2 , CO_2 , lipids...

Ions, hydrophilic molecules larger than water, and large molecules such as proteins do not move through the membrane on their own.

Three Forms of Transport Across the Membrane

Passive transport

Materials move down their concentration gradient through the phospholipid bilayer.

The passage of materials is aided both by a concentration gradient and by a transport protein.

Active transport

Molecules again move through a transport protein, but now energy must be expended to move them against their concentration gradient.

- Simple Diffusion may occur through any part of the plasma membrane (e.g. N₂, O₂, CO₂, NO gas molecules)
- Facilitated diffusion uses protein transporters (e.g. glucose uniporter)

Osmosis

- Diffusion of water across a membrane
- Moves from HIGH water potential (low solute) to LOW potential (high solute)

TABLE 5-1 Direction of Osmosis			
Condition	Net movement of water		
External solution is hypotonic to cytosol	into the cell		1 ₂ 0
External solution is hypertonic to cytosol	out of the cell	H_2O \leftarrow H_2O	1 ₂ 0
External solution is isotonic to cytosol	none		1 ₂ 0

protein channels for water: AQUAPORINS

MEMBRANE TRANSPORT PROTEINS

EXTRACELLULAR

ATP-powered pump Ion channel Transporter (10⁰ – 10³ ions/s) (10⁷ – 10⁸ ions/s) (10² – 10⁴ molecules/s)

Human Genome Organization: HUGO

The Human Genome Organization (HUGO) Nomenclature Committee Database has as a goal to make sure that each symbol is unique, and ensures that each gene locus is only given one approved gene symbol

In HUGO Nomenclature Committee Database:

SOLUTE CARRIER FAMILY (SLC) series:

Currently 43 families and 298 transporter genes

Non-SLC human transport-related genes: ATP-driven transporters Channels Ionotropic receptors Aquaporins Transporter and channel subunits auxiliary/regulatory transport proteins

Transport through cell membrane Classification based on function Membrane transport Passive Active Via mainly by ATP-driven transporters (pumps) Simple Facilitated Primary Active Secondary diffusion transport active transport Via various Via Ion channels transporters 19

Classes of carrier proteins

Transport of the two solutes is **obligatorily coupled**.

A gradient of one substrate, usually an ion, may drive uphill (against the gradient) transport of a co-substrate.

Uniporters: Example GLUT1

Symporters and Antiporters (Exchangers): some examples Sodium-coupled

Glucose, aminoacid uptake

Complexity of membrane transport in epithelia: the importance of spatial organization

Transmembrane proteins Tight junction Adherens junction Desmosomal cadherin Desmosome

Nature Reviews | Molecular Cell Biology

al lamina Hemidesmosome Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Integrated example 1: epithelial absorption of peptides

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved Integrated example 2: epithelial absorption of glucose

Ion Channels

Three basic properties of ion channels:

- To conduct ions <u>rapidly</u>
- Exhibit <u>high selectivity</u>: only certain ion species flow while others are excluded
- Conduction be regulated by processes known as <u>gating</u>, i.e. ion conduction is turned on and off in response to specific environmental stimuli

Ion Channels Have Very High Turnover Ratios

Carrier	Substrate Turnover (s ⁻¹)
Valinomycin	$3 \ge 10^4$
Na-K-ATPase	$5 \ge 10^2$
Ca-ATPase	$2 \ge 10^2$
Glucose	$0.1 - 1.3 \times 10^4$
transporter	

Channel	Substrate Turnover (s ⁻¹)
Na-channel (V)	7×10^{6}
Ca-channel (V)	$1.9 \ge 10^{6}$
K-channel (Ca,	$0.2-3 \times 10^7$
V)	
ACh receptor	2.3×10^7

As a comparison, the turnover ratio (maximum number of processed substrate molecules per active site, per second) serves as a good evidence for the physical concept of pore. The turnover rates for some known carriers or active transporters are compared to those of several ion channels

Also ...,

Very few ions are needed to generate a sizable transmembrane potential in cells

classification on the basis of gating mechanism

Unifying Themes in Ion Channel Structure

Polytopic Membrane Proteins

Oligomeric Arrangement With Intrinsic Symmetry

Pore Size Correlates with the Number of Subunits

- Voltage-Dependent (Na⁺, K⁺, Ca⁺⁺)
 Glutamate Receptors
- •Ligand-Gated (Ach,Gly,GABA, 5-HT)

•Mechanosensitive

•Connexins (Gap Junctions)

Representative structures of potassium channels subunits

Structure-Function Relations in a Voltage-Dependent Channel

Α

Structure

- Exists as a homo-tetramer with 4 identical subunits
- Each subunit is comprised of 3 alpha helices
- 2 helices are membrane spanning
- I inner helix is responsible for K⁺ selectivity

Crystal Structure of the Streptomyces K+ Channel

Doyle et al. 1998

- •*KcsA* is a homotetramer
- •Each subunit contains two TM segments
- •The selectivity filter is formed by an extended structure positioned by a short tilted helix

Selectivity Filter How does K⁺ channel distinguish K⁺ from Na⁺?

- ➢ Located in narrow region of the channel
- ➤ Contains Gly-Tyr-Gly AA residues
- Forces K+ to lose it's hydrating water molecules
- Carbonyl oxygen's in selectivity filter stabilize K+ ions
- Aromatic amino acids line the filter and act as springs to maintain appropriate channel width for K+
- This favorable interaction with the filter is not possible for Na+ because Na+ is too small to make contact with all the potential oxygen ligands of the carbonyl termini of the short alpha helices

Pumps

- Use the energy of ATP hydrolysis to move ions or small molecules across a membrane against a chemical concentration gradient or electric potential.
- Overall reaction ATP hydrolysis and the "uphill" movement of ions or small molecules is energetically favorable
- 4 P, F, and V classes transport ions only, whereas the ABC superfamily class transports small molecules as well as ions.

P-class pumps

Plasma membrane of plants, fungi, bacteria (H⁺ pump)

Plasma membrane of higher eukaryotes (Na⁺/K⁺ pump)

Apical plasma membrane of mammalian stomach (H⁺/K⁺ pump)

Plasma membrane of all eukaryotic cells (Ca²⁺ pump)

```
Sarcoplasmic reticulum membrane
in muscle cells (Ca<sup>2+</sup> pump)
```

Figure 11-9 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

V-class proton pumps

Vacuolar membranes in plants, yeast, other fungi

Endosomal and lysosmal membranes in animal cells

Plasma membrane of osteoclasts and some kidney tubule cells

F-class proton pumps Bacterial plasma membrane

Inner mitochondrial membrane

Thylakoid membrane of chloroplast

ABC superfamily

Bacterial plasma membranes (amino acid, sugar, and peptide transporters)

Mammalian plasma membranes (transporters of phospholipids, small lipophilic drugs, cholesterol, other small molecules)

P Class	F Class	V Class	ABC Class			
Substances Transported						
${\rm H^{+},Na^{+},K^{+},Ca^{2+}}$	H^+ only	H ⁺ only	Ions and various small molecules			
	Structural a	and Functional Features				
Large catalytic α subunits (often two) become phosphorylated during solute transport; smaller β subunits may regulate transport.	Multiple transmembrane and cytosolic subunits generally function to synthesize ATP on β cytosolic subunits powered by movement of H ⁺ down an electrochemical gradient.	Multiple transmembrane and cytosolic subunits generally use energy released by ATP <u>hydrolysis</u> to <u>pump</u> H ⁺ ions from <u>cytosol</u> to <u>organelle</u> lumens, acidifying them.	Two transmembrane domains form the pathway for solute; two cytosolic ATP- binding domains couple ATP hydrolysis to solute movement. Domains may be in one or separate subunits.			
Location of Specific Pumps						
Plasma <u>membrane</u> of plants, fungi, bacteria (H ⁺ pump)	Bacterial plasma membranes	Vacuolar membranes in plants, yeast, other fungi	Bacterial plasma membranes (amino acid, sugar, and peptide transporters)			
Plasma membrane of higher eukaryotes (Na ⁺ /K ⁺ pump)	Inner mitochondrial membrane	Endosomal and lysosomal membrane in animal cells	Mammalian <u>endoplasmic reticulum</u> (transporters of peptides associated with <u>antigen</u> presentation by MHC proteins)			
Apical <u>plasma membrane</u> of mammalian stomach cells (H ⁺ /K ⁺ pump)	Thylakoid membrane of <u>chloroplast</u>	Plasma membrane of certain acid- secreting animal cells (e.g., osteoclasts and some kidney tubule cells)				
Plasma membrane of all eukaryotic cells (Ca ²⁺ pump)			Mammalian plasma membranes (transporters of small molecules, <u>phospholipids</u> , small lipidlike drugs)			
Sarcoplasmic reticulum membrane in muscle cells (Ca ²⁺ pump)						

