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The interplay between neurons and glia in synapse
development and plasticity
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Role of mammalian perisynaptic glia in synapse:

1. Development
2. Maturation
3. Plasticity
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NEURONS AND GLIA
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Glial cells are non-neuronal cells that maintain homeostasis, form myelin, and provide
support and protection for neurons in the central and peripheral nervous systems



ASTROCYTES AND MICROGLIA DEVELOPMENT
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Radial glia can become astrocytes, as well as producing intermediate progenitors that expand in number before producing
astrocytes. Protoplasmic astrocytes and fibrous astrocytes might arise from common or independent progenitors.
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1) Primitive macrophages exit the yolk sac blood islands, colonize the neuroepithelium and give raise to microglia
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1) Primitive macrophages exit the yolk sac blood islands, colonize the neuroepithelium and give raise to microglia
2) Embryonic microglia expand and colonize the whole CNS until adulthood
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1) Primitive macrophages exit the yolk sac blood islands, colonize the neuroepithelium and give raise to microglia
2) Embryonic microglia expand and colonize the whole CNS until adulthood
3) In steady state conditions, embryonically-derived microglia will maintain themselves until adulthood
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1) Primitive macrophages exit the yolk sac blood islands, colonize the neuroepithelium and give raise to microglia

2) Embryonic microglia expand and colonize the whole CNS until adulthood

3) In steady state conditions, embryonically-derived microglia will maintain themselves until adulthood

4) During certain inflammatory conditions, the recruitment of monocytes or other bone marrow-derived progenitors can
supplement the microglial population to some extent



SYNAPTOGENESIS
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A MODEL FOR SYNAPTOGENESIS

AXON GUIDANCE CELL-TO-CELL ADHESION SYNAPSE FORMATION
l
ponting poatine pontine
200N 0N axon
re
neurexin? —» presynapse)

!

el N

membrane  newroligin

granule cell
{future postsynapse)




SYNAPSE FORMATION

Gamma-protocadherins -> Regulation of both excitatory
/ and inhibitory synapses formation
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SYNAPSE FORMATION

Gamma-protocadherins -> Regulation of both excitatory
/1 and inhibitory synapses formation

-> Control over excitatory synapses

= i: \
| \\\ —> -> Induce excitatory synapses formation

Hevin -> Control over retinocollicular and thalamocortical
excitatory synapses formation

Thrombospondin -> Formation of post-synaptically silent excitatory synapses



Astrocyte signals regulate synaptic glutamate receptors
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Astrocyte signhals regulate synaptic glutamate receptors
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The presence of astrocytes enhances synapse formation
between neurons and increases the number of AMPA
receptors incorporated into synapses



Astrocyte signhals regulate synaptic glutamate receptors
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between neurons and increases the number of AMPA
receptors incorporated into synapses



Astrocyte signhals regulate synaptic glutamate receptors

(a) Neurons alone (b) Astrocytes and neurons
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The presence of astrocytes enhances synapse formation
between neurons and increases the number of AMPA
receptors incorporated into synapses

Astrocytes also secrete negative regulators of AMPA
receptors that decrease synaptic levels of AMPA
receptors and synaptic strength, including SPARC.



SPARC -> Inhibits the synaptogenic

/ function of Hevin

BDNF -> Controls excitatory synapse formation
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Acute application of BDNF preferentially increases the number of large spines
(middle panel), whereas a gradual increase of BDNF stimulates spine motility and
preferentially increases the number of filopodia (right panel). (Bai Lu et al.; 2013)



SYNAPSE MODULATION

CSPGs -> Determines surface AMPAR mobility and

/ synaptic strength
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SYNAPSE MODULATION

CSPGs -> Determines surface AMPAR mobility and

/1 synaptic strength

% Hevin -> Required for ODP in the visual cortex

CX30 -> Regulates synaptic contact of astrocytes
processes

D-serine -> Controls NMDAR-dependent synaptic
integration of adult-born neurons

MEGF10/MERTK -> Regulates engulfment of
unwanted synapses by astrocytes



Perisynaptic astrocyte processes contain transporters that take up glutamate (Glu) that has been released into the
synapse and return it to neurons in the form of glutamine (Gin)
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Glutamate receptors on astrocytes sense synaptic glutamate release, which in turn induces a rise in Ca?*
concentration in the astrocytes



TNF-alpha -> Regulates AMPARs-dependent synaptic

/ plasticity
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TNF-alpha -> Regulates AMPARs-dependent synaptic

/ plasticity

/" mmmm) P2Y12 -> Required for ODP in visual cortex

\ CX3CR1 -> Controls synaptic pruning

\

CR3 and CR4 -> Controls synaptic pruning



Regulation of the functional expression of synaptic AMPA and NMDA receptors at
thalamocortical synapses of the barrel cortex
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It occurs mainly during
synaptogenesis, but also in
adulthood

Control of synapsis number

Perfomed by both astrocytes
and microglia

Highly regulated and
activity-dependent

Both Excitatory and Inhibitory
synapsis elimination
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PRUNING MOLECULAR RECOGNITION
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In vivo mouse model: Microglia engulf synaptic material after Ap 1-42 injection




GLIA: Housekeeper or Executive partener?
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In vitro Astrocyte Calcium Imaging
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CLINICAL ASPECTS

Neurodegenerative
disease

Neurodevelopmental
disease

Rett Syndrome Alzheimer’s disease

Down Syndrome Parkinson’s disease

Fragile X syndrome Huntington’s disease
Autistic Spectrum Disorder Amytrophic lateral sclerosis

Schizophrenia Inflammaging



RETT SYNDROME

MECP2

=1:10000
=" Normal development
up to 6—18 months of
age
= Regression
= Girls only

CDKL5

= Hanefeld variant

=1:100000
= |[ntellectual

disabilites
= Motor and language
deficits
= Hypotonia
=" Hand stereotypies

= Autonomic

disturbances

= Visual deficits

=" No period of
normal
development
= Early onset
seizures
= Girls and boys

= Congenital variant
Chahrour and Zoghbi, Neuron, 2007;
FOXG 1 Kilstrup-Nielsen et al., Neural Plast, 2012;
De Filippis R et al., Clin Genet. 2012;
Sala and Pizzorusso, Dev Neurobiol, 2013
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RETT SYNDROME

Microglia contribute to circuit defects in
Mecp2 null mice independent of
microglia-specific loss of Mecp2
expression

Dorothy P Schafer'?*, Christopher T Heller'?, Georgia Gunner'?, Molly Heller’,
Christopher Gordon', Timothy Hammond', Yochai Wolf*, Steffen Jung®,
Beth Stevens'*
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ORIGINAL ARTICLE
Fragile X related protein 1 (FXR1P) regulates
proliferation of adult neural stem cells




Selective deletion of FXR1P in adult neural stem cells leads to fewer adult-born cells
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FXR1P lack affects proliferation, but not cell death or differentiation
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CONCLUSION

(a) Synapse Formation (b) Synapse and Circuit Plasticity (c) Synapse Elimination
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Current Opinion in Neurobiology

QOpen question...

How do glial cells convert neuronal signals into functional outputs?

Regulation of synaptogenic proteins expression in astrocytes

Communication mechanism among glial cells for synaptic pruning coordination

Microglia role in synaptic response modulation



