

ScienceDirect

Beyond proneural: emerging functions and regulations of proneural proteins

François Guillemot¹ and Bassem A Hassan²

Viviana Canicatti Celeste Nicola

PRONEURAL GENES

PRONEURAL GENES

Post mitotic neurons (transiently express): Migration, axon and dendritic growth

Progenitors cells: Neural-neuronal commitment

New properties and additional roles of proneural factors

themselves.

Ascl1 and cortex expansion

DEVELOPMENT

Ascl1 and <u>cell proliferation</u>

ADULT NEUROGENIC REGIONS

Ascl1 and cell proliferation

ADULT NEUROGENIC REGIONS

But, in non-neurogenic regions?

© 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 840-845 doi:10.1242/dev.116657

RESEARCH REPORT

STEM CELLS AND REGENERATION

Striatal astrocytes produce neuroblasts in an excitotoxic model of Huntington's disease

Giulia Nato^{1,2}, Alessia Caramello^{1,2}, Sara Trova^{1,2}, Valeria Avataneo^{1,2}, Chiara Rolando³, Verdon Taylor³, Annalisa Buffo^{2,4}, Paolo Peretto^{1,2,*,‡} and Federico Luzzati^{1,2,*,‡}

A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets

Diogo S. Castro,^{1,5,6} Ben Martynoga,¹ Carlos Parras,^{1,2} Vidya Ramesh,¹ Emilie Pacary,¹ Caroline Johnston,³ Daniela Drechsel,¹ Mélanie Lebel-Potter,¹ Laura Galinanes Garcia,¹ Charles Hunt,¹ Dirk Dolle,⁴ Angela Bithell,³ Laurence Ettwiller,⁴ Noel Buckley⁻³ and François Guillemot¹

nucleic acid binding Ascl1 transcription regulation signal transduction kinase activity Notch signalling neurite morphogenesis transporter enzyme regulation cytoskeletal regulation cell fate specification neuronal differentiation n 80 cell proliferation % Ascl1 targets

Possibly reflecting this proliferation-promot- ing function, Ascl1 has been implicated in the tumorigenicity of glioblastoma and other tumours.

promoter array 500,000 features 17,000 promoters

NS cells

chromatin

617 binding events 603 promoters

GENOME-WIDE

ASCL1 as a **PIONEER FACTOR**

Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons

Mouse non-neural cell types

Orly L. Wapinski,^{1,2,11} Thomas Vierbuchen,^{2,3,4,11} Kun Qu,¹ Qian Yi Lee,^{3,4,5} Soham Chanda,^{3,4} Daniel R. Fuentes,^{2,3,4} Paul G. Giresi,¹ Yi Han Ng,^{3,4,6} Samuele Marro,^{3,4} Norma F. Neff,⁵ Daniela Drechsel,⁹ Ben Martynoga,⁹ Diogo S. Castro,¹⁰ Ashley E. Webb,⁷ Thomas C. Südhof,⁸ Anne Brunet,^{2,7} Francois Guillemot,⁹ Howard Y. Chang,^{1,2,*} and Marius Wernig^{2,3,4,*}

A Chromatin Signature Predicts Reprogramming Capacity

MEFs chromatin landscape

(predicted targets based on NPCs binding sites)

1) How do these genes control both <u>early</u> and <u>late</u> stages of neurogenesis?

2) Which are the main actors that control the switch of protein activities?

Activities switch: possible controls...

Nervous decision-making: To divide or to differentiate ? That is the question..

- <u>Neurogenesis follows a temporal pattern</u>, with precursor cells changing their competence and forming different cell types over time: <u>maintenance</u> <u>of the precursor pool is essential to enable the full</u> <u>repertoire of cell types to form.</u>
- Highly regulated temporal production of different cell types is conserved throughout amniote evolution, but <u>modifications to progenitor cell</u> <u>number, location and proliferative capacity has</u> <u>enabled expansion of the mammalian cortex.</u>

Phosphorylation like switch binary

 A conserved post-translationally modified residue controls in a similar way all proneural proteins.

• Modifications of non-conserved residues may fine-tune the context-specific functions of individual proneural proteins.

Phosphorylation like switch binary

Model of cell-cycle dependent post-translational modifications (SP pairs)

Progenitor-associated genes have a more open chromatin state.

<u>Differentiation-associated</u> genes require additional epigenetic remodelling before actvation. <u>Cdk-dependent phosphorylation</u> <u>coordinates</u> the cell cycle control of <u>precursor maintenance versus</u> <u>differentiation.</u>

A_functional response to these phosphorylation events gives a <u>rheostat-like response</u> to changes in cyclin-cdk activity during cell cycle and development.

Neuronal differentiation

> Similar to Ngn2, differential sensitivity of downstream targets to Ascl1 phosphorylation probably results from differences in the requirement for epigenetic remodelling by Ascl1 for activation.

> > R. Ali *et al.* 2014

Dynamicity

Protein expression levels

Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors

Itaru Imayoshi,^{1,2,3,4}*† Akihiro Isomura,^{1,5}† Yukiko Harima,^{1,5} Kyogo Kawaguchi,⁶ Hiroshi Kori,^{5,7} Hitoshi Miyachi,¹ Takahiro Fujiwara,³ Fumiyoshi Ishidate,³ Ryoichiro Kageyama^{1,3,5}*

- In ventral telencephalon (perinatal stages) multipotency is characterised by oscillating neurogenic and gliogenic factors.
- The levels of Ascl1 and Neurog2 transcripts and proteins oscillate in neuronal progenitors with periods of 2/3h, as a consequence of repression by oscillating Hes proteins downstream of Notch signaling.
- Proneural proteins expression becomes stabilised when notch signalling is down/regulated and progenitors exit the cell cycle and differentiate.

Dynamicity

Protein expression levels

Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors

Itaru Imayoshi,^{1,2,3,4}*† Akihiro Isomura,^{1,5}† Yukiko Harima,^{1,5} Kyogo Kawaguchi,⁶ Hiroshi Kori,^{5,7} Hitoshi Miyachi,¹ Takahiro Fujiwara,³ Fumiyoshi Ishidate,³ Ryoichiro Kageyama^{1,3,5}*

Outstanding questions:

- What is the mechanism by which oscillatory and sustained expression of bHLH factors differentially regulate downstream gene expression?
- Is the Ascl1 expression oscillatory in activated NPCs in the adult brain?
- If Hes1 expression does not oscillate in NPCs, what will happen to neural development?

Regulation of proteins stability

NEURODEVELOPMENT

Return to quiescence of mouse neural stem cells by degradation of a proactivation protein

Noelia Urbán,^{1*} Debbie L. C. van den Berg,¹ Antoine Forget,^{2,3} Jimena Andersen,¹† Jeroen A. A. Demmers,⁴ Charles Hunt,¹ Olivier Ayrault,^{2,3} François Guillemot^{1*}

- Ascl1 is an unstable protein that is polyubiquitinylated and targeted to the proteasome by the E3 ubiquitin ligase HUWE1/UREB1/MULE.
- Deletion of Huwe1 in stem cells of the adult <u>hippocampus</u> results in stabilisation of Ascl1 and promotion of cell cycle reentry by inducing the expression of CcnD genes, which prevents the return to quiescence of stem cells and leads eventually to a contraction of the pool of proliferating stem cells.

ABOUT REPROGRAMMING...

IN VITRO

IN VIVO	
---------	--

transduced cell type	reprogramming factor	time between gene	neuronal features n
	/ transduction vector	transduction and analysis	
astrocytes in adult striatum	Asci1 + Brn2 + Myti1	6 weeks	morphology and molecular markers
	lentivirus		
NG2 glia in injured adult cortex	Ascit	N/A	no reprogramming
	retrovirus		
astrocytes in adult striatum	Ascit	N/A	no reprogramming
	lentivirus		
astrocytes in injured adult spinal cord	Ascit	N/A	no reprogramming
	lentivirus		
activated glial cells in injured striatum and cortex	Ascit	N/A	no reprogramming
	retrovirus		
astrocytes in postnatal and adult brain	Asci1	between 10 and 45 days	morphology, markers, action potentials, synaptic currents
	adeno-associated virus		
activated glial cells in injured striatum and cortex	Neurog2 + FGF2 + EGF	7 and 14 days	molecular markers
	retrovirus		
astrocytes and NG2 glia in injured cortex	NeuroD1	7 and 14 days	molecular markers, action potentials, synaptic currents
	retrovirus		
NG2 glia in injured adult cortex	Sox2	12 and 24 days	morphology, markers, action potentials, synaptic currents
	retrovirus		
astrocytes in adult striatum	Sox2	5 weeks	morphology, markers, action potentials, synaptic currents
	lentivirus		requires BDNF+Nogin or Valproic Acid for maturation

ABOUT REPROGRAMMING...

IN VIVO

transduced cell type	reprogramming factor	time between gene	neuronal features	n
	/ transduction vector	transduction and analysis		
astrocytes in adult striatum	Asci1 + Brn2 + Myti1	6 weeks	morphology and molecular markers	
	lentivirus			
NG2 glia in injured adult cortex	Ascit	N/A	no reprogramming	
	retrovirus			
astrocytes in adult striatum	Ascit	N/A	no reprogramming	
	lentivirus			
astrocytes in injured adult spinal cord	Ascit	N/A	no reprogramming	
	lentivirus			
activated glial cells in injured striatum and cortex	Ascit	N/A	no reprogramming	
	retrovirus			
astrocytes in postnatal and adult brain	Ascit	between 10 and 45 days	morphology, markers, action potentials, synaptic current	ts
	adeno-associated virus			
activated glial cells in injured striatum and cortex	Neurog2 + FGF2 + EGF	7 and 14 days	molecular markers	
	retrovirus			
astrocytes and NG2 glia in injured cortex	NeuroD1	7 and 14 days	molecular markers, action potentials, synaptic currents	
	retrovirus			
NG2 glia in injured adult cortex	Sox2	12 and 24 days	morphology, markers, action potentials, synaptic curren	nts
	retrovirus			
astrocytes in adult striatum	Sox2	5 weeks	morphology, markers, action potentials, synaptic current	nts
	lentivirus		requires BDNF+Nogin or Valproic Acid for maturation	

Direct conversion: a potential regenerative therapy **?**

TRANSDIFFERENTIATION $\boldsymbol{V}\boldsymbol{S}$ reprogramming

• Transdifferentiation o lineage reprogramming does not carry as high a risk of carcinogenesis

• Are generally cultured for a shorter time than iPS cells and therefore are less susceptible to the accumulation of genetic mutations during in vitro culturing.

Direct conversion: a potential regenerative therapy

TRANSDIFFERENTIATION \boldsymbol{VS} reprogramming

- No recapitulation of neurodevelopmental stages
- Less expandability and cell numbers.
- No rejuvenation.
- TFs expression can be temporal and is not continuosly required for iN conversion, so potential risk that permanent overexpression of neurodevelopmental TF might interfere with mature neuronal phenotypes, funcionality of the generated iNs

Thanks for the attention