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of proneural proteins
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Post mitotic neurons (transiently express):
Migration, axon and dendritic growth

l_’o_'*_'

Meural stem cell Intermediate MNewborn Differentiated
progenitor neuron neuron
Asch
Atoh1
Neurog2
Neurod1

Currant Opinion in Neurcbiclogy

PRONEURAL GENES

Progenitors cells:
Neural-neuronal commitment

Neighbouring cell Neural progenitor
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New properties and additional roles of proneural factors

.Regulation of

proliferation and

differentiation
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Ascll and cortex expansion
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Ascll and cell proliferation

stem cell neuronal progenitor

| Proliferation | Survival/Death Differel

1-3days 1-2 weeks 2.3 weeks 4.6 weeks and more




Ascll and cell proliferation

But, in non-neurogenic
regions?

The Company of
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RESEARCH REPORT STEM CELLS AND REGENERATION

Striatal astrocytes produce neuroblasts in an excitotoxic model of
Huntington’s disease
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A novel tunction ot the proneural tactor
Ascll in progenitor proliteration identitied

by genome-wide characterization
of its targets
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cell fate specification neuronal differentiation

cell proliferation
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GENOME-WIDE
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promoter array
500,000 features
17,000 promoters

617 binding events
603 promoters

Possibly reflecting this
proliferation-promot- ing
function, Ascll has been
implicated in the tumorige-
nicity of glioblastoma and
other tumours .




ASCL1 as a PIONEER FACTOR

Hierarchical Mechanisms
for Direct Reprogramming vase
of Fibroblasts to Neurons e
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1) How do these genes control both early and late stages of neurogenesis ?

2) Which are the main actors that control the switch of protein activities?



Activities switch: possible controls...

Post-
translational
regulation

Dynamicity Degradation



Cell

Nervous decision-making:

Neurogenesis follows a temporal pattern, with

precursor cells changing their competence and
forming different cell types over time: maintenance

of the precursor pool is essential to enable the full
repertoire of cell types to form.

To divide or to differentiate ?
That is the question..

Highly regulated temporal production of different
cell types is conserved throughout amniote
evolution, but modifications to progenitor cell
number, location and proliferative capacity has

enabled expansion of the mammalian cortex.




Phosphorylation like switch binary

mouse Ascli

mouse Neurog2

Drosophila Atonal

Eﬁ : Inactivating phosphorylation

B3 - Activity alerting phosphorylation

[Ed : Activating phosphorylation
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I: Common proneural residue

E : Protein/specles specific residue

A conserved post-translationally
modified residue controls in a similar
way all proneural proteins.

Modifications of non-conserved residues
may fine-tune the context-specific
functions of individual proneural proteins.



Phosphorylation like switch binary

Model of cell-cycle dependent post-translational modifications (SP pairs)

0@2 Rapid
e degradation

Progenitor
maintenance

Short cell cycle
High cdk kinase
Low cdkis

Progenitor-associated genes have
a more open chromatin state.

Cell Boundary

Long cell cycle
Low cdk kinase
High cdkis

Differentiation-associated genes
require additional epigenetic
remodelling before actvation.

Y
Neuronal

Cdk-dependent phosphorylation

coordinates the cell cycle control

of precursor maintenance versus
differentiation.

A functional response to these
phosphorylation events gives a
rheostat-like response to changes
in cyclin-cdk activity during cell
cycle and development.

differentiation

Similar to Ngn2, differential
sensitivity of downstream targets to
Ascl1l phosphorylation probably
results from differences in the
requirement for epigenetic
remodelling by Ascll for activation.

R. Aliet al. 2014
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Hes1 and Ascll
expression are

Oscillatory Control of Factors inversely correlated

Determining Multipotency and Fate
In Mouse Neural Progenitors

Itaru Imayoshi,>****+ Akihiro Isomura,™*t Yukiko Harima,™* Kyogo Kawaguchi,® Hiroshi Kori,>’

Hitoshi Miyachi, Takahiro Fujiwara,> Fumiyoshi Ishidate,® Ryoichiro Kageyama™®*>*
Self-renewal
|y
. NPC Neugon
* Inventral telencephalon (perinatal stages) § a lﬁﬁ;ﬁj
multipotency is characterised by oscillating & Hyt Mt O e
neurogenic and gliogenic factors. % . /
. O drocyt
* The levels of Ascll and Neurog?2 transcripts and g
proteins oscillate in neuronal progenitors with :::
periods of 2/3h, as a consequence of repression 2 Time
by oscillating Hes proteins downstream of Notch Astrocyte

signaling.

* Proneural proteins expression becomes stabilised
when notch signalling is down/regulated and
progenitors exit the cell cycle and differentiate.
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Hes1 and Ascll

expression are

Oscillatory Control of Factors inversely correlated

Determining Multipotency and Fate
In Mouse Neural Progenitors

Itaru Imayoshi,>****+ Akihiro Isomura,™*t Yukiko Harima,™* Kyogo Kawaguchi,® Hiroshi Kori,>’
Hitoshi Miyachi, Takahiro Fujiwara,> Fumiyoshi Ishidate,® Ryoichiro Kageyama™®*>*

Self-renewal

Outstanding questions: L=
“, NPC Neugon

* What is the mechanism by which oscillatory
and sustained expression of bHLH factors
differentially regulate downstream gene
expression?

Protein expression levels

e Is the Ascll expression oscillatory in activated
NPCs in the adult brain?

* If Hesl expression does not oscillate in NPCs,
what will happen to neural development?




Regulation of proteins stability

NEURODEVELOPMENT e
. QU

Return to quiescence of mouse neural v

stem cells by degradation of a

proactivation protein « Ascll is an unstable protein that is

Noelia Urbian,™ Debbie L. C. van den Berg,! Antoine Forget,™® Jimena Andersen,'t pOIVUquUItInylated and ta rgeted to the

Jeroen A. A. Demmers,” Charles Hunt,' Olivier Ayrault,™* Francois Guillemot™ proteasome by the E3 Ub|qU|t|n I|gase

HUWE1/UREB1/MULE.

e Deletion of Huwel in stem cells of the adult
hippocampus results in stabilisation of Ascll
and promotion of cell cycle reentry by

‘ inducing the expression of CcnD genes,

// which prevents the return to quiescence of

Quiescience

Proliferation stem cells and leads eventually to a

contraction of the pool of proliferating stem
cells.




IN VITRO
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tranaduced cell type

astrocytas in adult stratum

MNE2 glia in injured adult corbex

astmcytas in adult sinatum

astmcytas in ingured adull spinal cord

activeled glial calls ininjured stratum and cortex
astmeytes in postnatal and adull brain
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astrcytes and MG gha in injured cortex \

MNGE2 glia in injured adult cortex

astmcytas in adult sinatum

ABOUT REPROGRAMMING...

IN VIVO
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ABOUT REPROGRAMMING...

Glia to neuron reprogramming IN VIVO
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Direct conversion: a potential regenerative therapy ?

TRANSDIFFERENTIATION VS REPROGRAMMING o0

Induced-pluripotent stem cell /‘\\')
& % -

* Transdifferentiation o lineage reprogramming does not carry as high
a risk of carcinogenesis

TRANSDIFFERENTLATION

Differentiated cell Another (parily) differentiated cell

* Are generally cultured for a shorter time than iPS cells and
therefore are less susceptible to the accumulation of genetic
mutations during in vitro culturing.



Direct conversion: a potential regenerative therapy

TRANSDIFFERENTIATION VS REPROGRAMMING

hPSC differentiation Direct conversion
|

& Time course and cell numbers

= 1-3 weeks from fibroblasts
* Limited cell numbers
{restricted to fibroblast numbers)

= 4—6 months from fibroblasts
* LInlimited cell numbers
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b Development and age !
Somatic
/CE"’. \
hP5Cs

Direct iN
COMVEersion
Differentiation
through neural
development

AW

hP5C-derived neuron
» Development-borm
= Rejuvenated

Fibroblast-derived iN
* Skipped development
= Age-equivalent

No recapitulation of neurodevelopmental stages
Less expandability and cell numbers.
No rejuvenation.

TFs expression can be temporal and is not continuosly
required for iN conversion, so potential risk that permanent
overexpression of neurodevelopmental TF might interfere
with mature neuronal phenotypes, funcionality of the
generated iNs






