
Rho GTPases and their regulators in the control of actin cytoskeleton

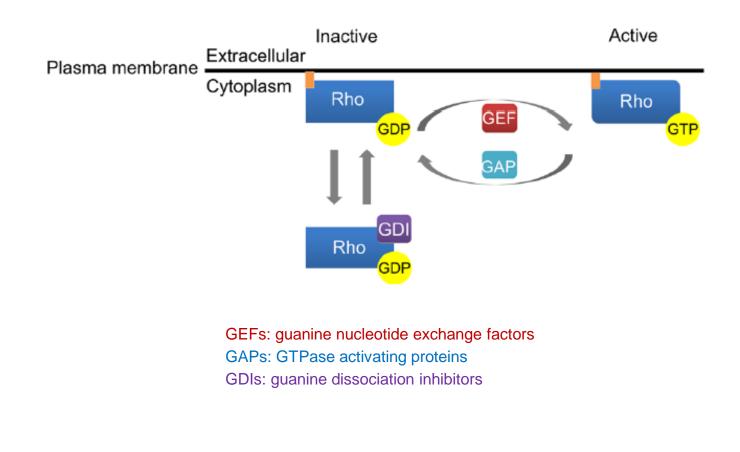
Valentina Zamboni

PhD student in Molecular Medicine XXXI cycle

24th May 2017

Rho-GTPases GEFs and GAPs

in CNS diseases


d GAPs Migration

Neuritogenesis

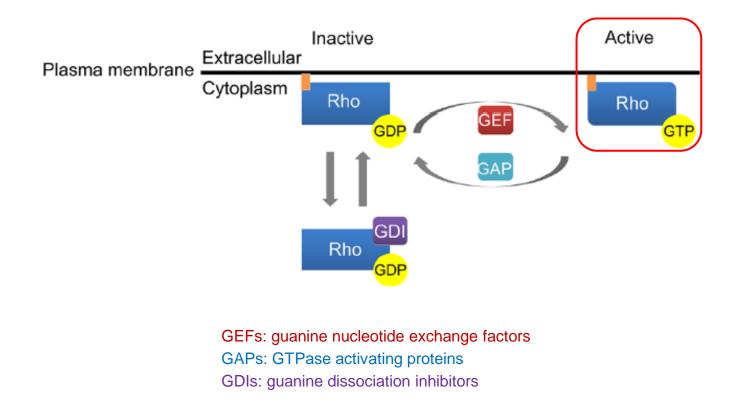
Dendritic spines

Actin dynamics Conclusions

Small Rho-GTPases regulation

Rho-GTPases GEFs and GAPs

in CNS diseases


GAPs Migration

Neuritogenesis

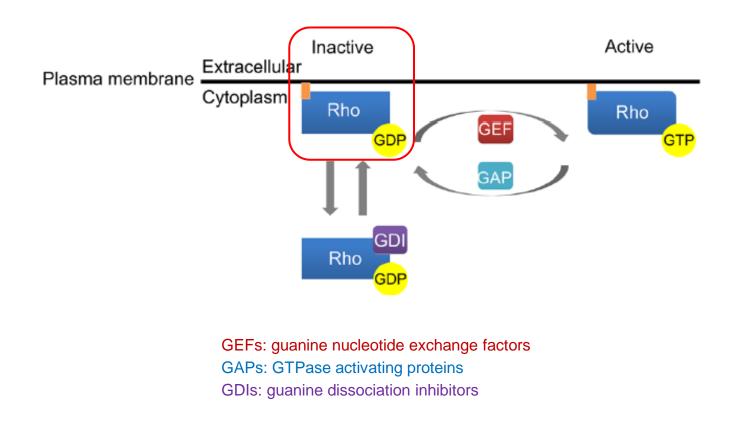
Dendritic spines

Actin dynamics Conclusions

Small Rho-GTPases regulation

Rho-GTPases GEFs and GAPs

in CNS diseases


GAPs Migration

Neuritogenesis

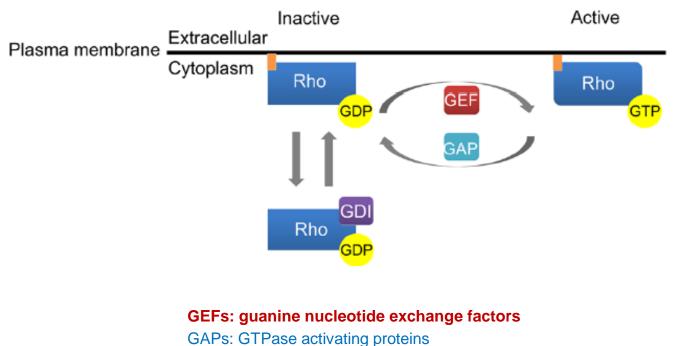
Dendritic spines

Actin dynamics Conclusions

Small Rho-GTPases regulation

Rho-GTPases GEFs and GAPs

in CNS diseases


d GAPs Migration

Neuritogenesis

Dendritic spines

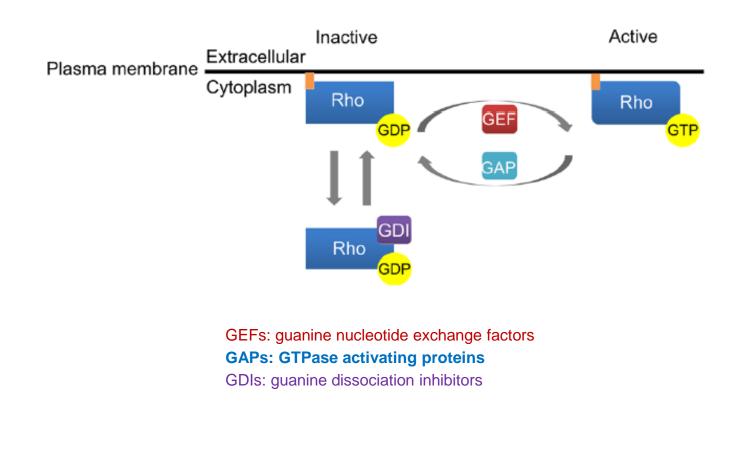
Actin dynamics Conclusions

Small Rho-GTPases regulation

GDIs: guanine dissociation inhibitors

Rho-GTPases GEFs and GAPs

in CNS diseases


d GAPs Migration

Neuritogenesis

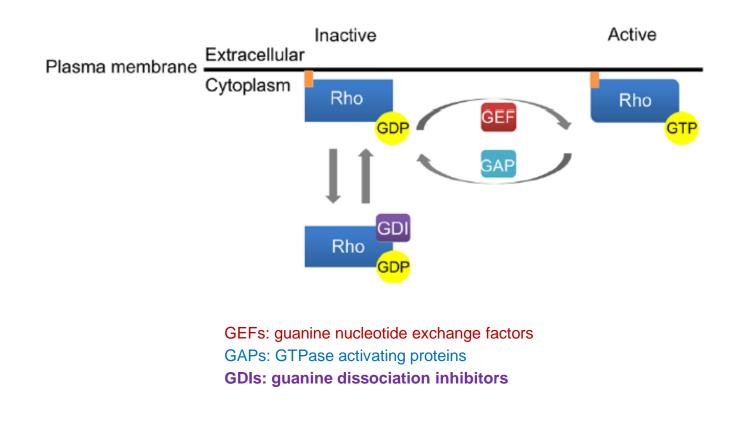
Dendritic spines

Actin dynamics Conclusions

Small Rho-GTPases regulation

Rho-GTPases GEFs and GAPs

in CNS diseases


d GAPs Migration

Neuritogenesis

Dendritic spines

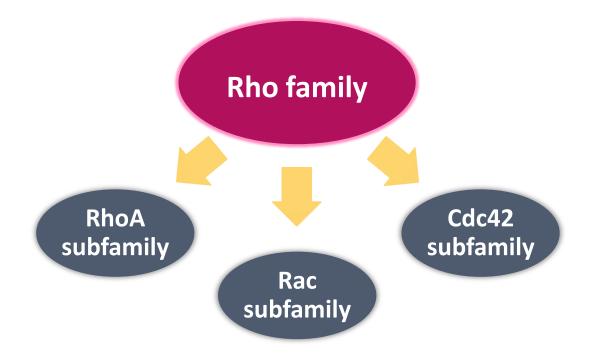
Actin dynamics Conclusions

Small Rho-GTPases regulation

Rho-GTPases GEFs

in CNS diseases

GEFs and GAPs Migration


Neuritogenesis

Dendritic spines

Actin dynamics Co

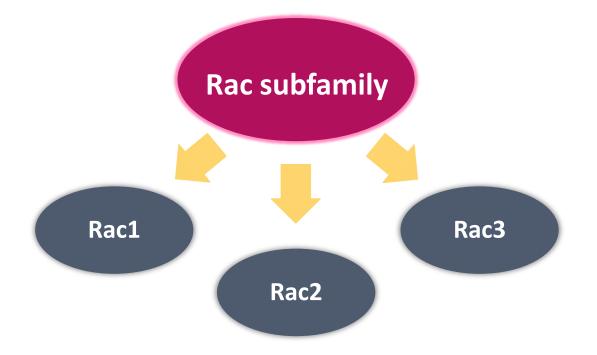
Conclusions

The Rho family of GTPases

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration


Neuritogenesis

Dendritic spines

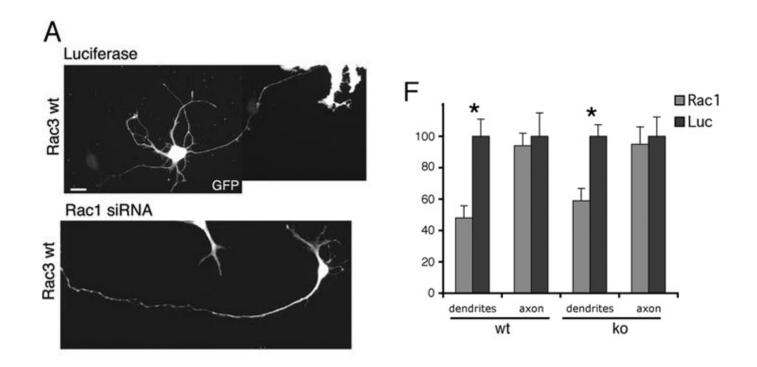
Actin dynamics Con

Conclusions

The Rac family of GTPases

Rho-GTPases GEFs and GAPs in CNS diseases

Migration


Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

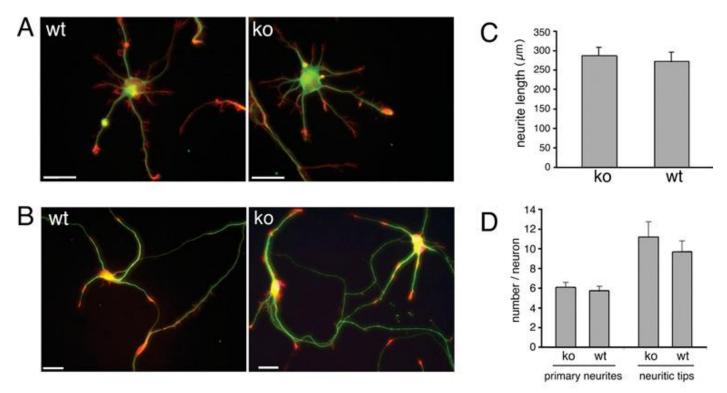
Rac1 knockdown induced a strong reduction in the dendritic tree in hippocampal cultures

Gualdoni et al. (2007), Bio. Cell.

Rho-GTPases GEFs and GAPs

in CNS diseases

APs Migration


Neuritogenesis

Dendritic spines

Actin dynamics (

Conclusions

Hippocampal neurons isolated from Rac3 KO mice developed normally in culture

Gualdoni et al. (2007), Bio. Cell.

Given the high similarity between Rac1 and Rac3, it is possible that these GTPases have redundant functions during development, and that Rac1 could at least partially compensate Rac3 depletion.

Rho-GTPases GEFs and GAPs

in CNS diseases

APs Migration

Neuritogenesis

Dendritic spines

Actin dynamics Conclusions

Rho GTPases in CNS diseases

Neuroscience and Biobehavioral Reviews 46 (2014) 285-	301		
Contents lists available at ScienceDirect		Neuroscience & Bilobetvarioral Reviews	
Neuroscience and Biobehavioral	Reviews		
ELSEVIER journal homepage: www.elsevier.com/locate	/neubiorev		
Review			
Aberrant Rho GTPases signaling and cognitive dysfun In vivo evidence for a compelling molecular relations		CrossMark	
Bianca De Filippis ^{a,*} , Emilia Romano ^{a,b} , Giovanni Laviola ^a		EXPERIMENTAL CELL RESEARCH 319 (2013) 2368-2374	
^a Sect, Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy ^b Bambino Gesù, Children Hospital, IRCCS, Roma, Italy	5-22 - 2 ¹¹¹	Available online at www.sciencedirect.com ScienceDirect	Experimental CELF REFERREN
	ELSEVIER	journal homepage: www.elsevier.com/locate/yexcr	
	Review Article		
	Rho GTPase	signaling at the synapse: Implications for	CrossMark
Rho GTPases, Dendritic Structure,	intellectual	disability	Ŭ
and Mental Retardation	Wei Ba ^a , Jori van	der Raadt ^a , Nael Nadif Kasri ^{a,b,*}	
Sarah E. Newey, Vanisree Velamoor, Eve-Ellen Govek, Linda Van A	elst		
Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New			
Cold Opining Harbor Laboratory, T Bungtown Hoad, Cold Spring Harbor, New	IVIN 11724		
Received 18 October 2004; accepted 22 November 2004			

in CNS diseases

Neuritogenesis

Dendritic spines

Actin dynamics Conclusions

Rho GTPases in Intellectual Disability and Mental Retardation (ID-MR)

ID-MR affects $\sim 2\%$ –3% of children and young adults. It is characterized by reduced cognitive function, defined by an intelligence quotient lower than 70, together with associated functional deficits in adaptive behavior.

ARTICLES	
The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis Eve-Ellen Govek ¹⁻³ , Sarah E Newey ^{1,3} , Colin J Akerman ¹ , Justin R Cross ¹ , Lieven Van der Veken ¹ & Linda Van Aelst ^{1,2}	Human Molecular Genetics, 2012, Vol. 21, No. 2 268–286 doi:10.1093/hmg/ddr457 Advance Access published on October 11, 2011 Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits Ger J.A. Ramakers ^{1,2,†} , David Wolfer ^{3,4,†} , Georg Rosenberger ^{5,†} , Kerstin Kuchenbecker ⁵ , Hans-Jürgen Kreienkamp ⁵ , Janine Prange-Kiel ^{6,‡} , Gabriele Rune ⁶ , Karin Richter ⁷ , Kristina Langnaese ⁷ , Sophie Masneuf ³ , Michael R. Bösl ^{9,¶} , Klaus-Dieter Fischer ^{7,8} , Harm J. Krugers ¹⁰ , Hans-Peter Lipp ² , Elly van Galen ¹ and Kerstin Kutsche ^{5,*}

in CNS diseases

Neuritogenesis

Dendritic spines

Actin dynamics Conclusions

Rho GTPases in Intellectual Disability and Mental Retardation (ID-MR)

ID-MR affects $\sim 2\%$ –3% of children and young adults. It is characterized by reduced cognitive function, defined by an intelligence quotient lower than 70, together with associated functional deficits in adaptive behavior.

ARTICLES	
The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis Eve-Ellen Govek ¹⁻³ , Sarah E Newey ^{1,3} , Colin J Akerman ¹ , Justin R Cross ¹ , Lieven Van der Veken ¹ & Linda Van Aelst ^{1,2}	Human Molecular Genetics, 2012, Vol. 21, No. 2 268-286 doi:10.1093/hmg/ddr457 Advance Access published on October 11, 2011 Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability
	is paralleled by impaired structural and synaptic plasticity and cognitive deficits
	Ger J.A. Ramakers ^{1,2,†} , David Wolfer ^{3,4,†} , Georg Rosenberger ^{5,†} , Kerstin Kuchenbecker ⁵ , Hans-Jürgen Kreienkamp ⁵ , Janine Prange-Kiel ^{6,‡} , Gabriele Rune ⁶ , Karin Richter ⁷ , Kristina Langnaese ⁷ , Sophie Masneuf ³ , Michael R. Bösl ^{9,†} , Klaus-Dieter Fischer ^{7,8} , Harm J. Krugers ¹⁰ , Hans-Peter Lipp ² , Elly van Galen ¹ and Kerstin Kutsche ^{5,*}

in CNS diseases

Neuritogenesis

Dendritic spines

Actin dynamics Conclusions

Rho GTPases in Intellectual Disability and Mental Retardation (ID-MR)

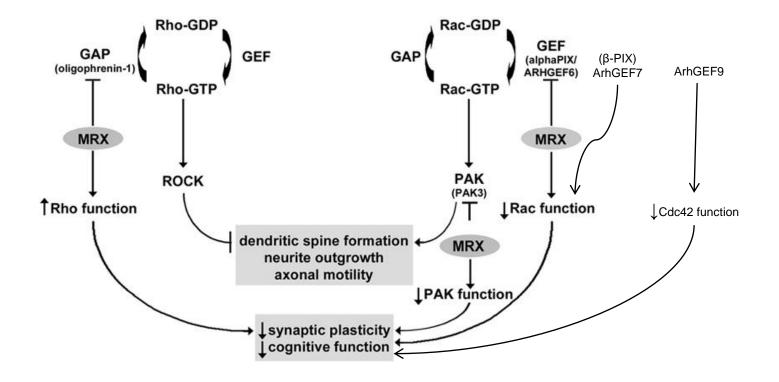
ID-MR affects $\sim 2\%$ –3% of children and young adults. It is characterized by reduced cognitive function, defined by an intelligence quotient lower than 70, together with associated functional deficits in adaptive behavior.

ARTICLES	
The X-linked mental retardation protein oligophrenin-1 Is required for dendritic spine morphogenesis Eve-Ellen Govek ¹⁻³ , Sarah E Newey ^{1,3} , Colin J Akerman ¹ , Justin R Cross ¹ , Lieven Van der Veken ¹ & Linda Van Aelst ^{1,2}	Human Molecular Genetics, 2012, Vol. 21, No. 2 268-286 doi:10.1093/hmg/ddr457 Advance Access published on October 11, 2011 Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability
	is paralleled by impaired structural and synaptic plasticity and cognitive deficits Ger J.A. Ramakers ^{1,2,†} , David Wolfer ^{3,4,†} , Georg Rosenberger ^{5,†} , Kerstin Kuchenbecker ⁵ , Hans-Jürgen Kreienkamp ⁵ , Janine Prange-Kiel ^{6,‡} , Gabriele Rune ⁶ , Karin Richter ⁷ , Kristina Langnaese ⁷ , Sophie Masneuf ³ , Michael R. Bösl ^{9,¶} , Klaus-Dieter Fischer ^{7,8} , Harm J. Krugers ¹⁰ , Hans-Peter Lipp ² , Elly van Galen ¹ and Kerstin Kutsche ^{5,*}

Rho-GTPases GEFs and GAPs

in CNS diseases

Ps Migration


Neuritogenesis

Dendritic spines

Actin dynamics

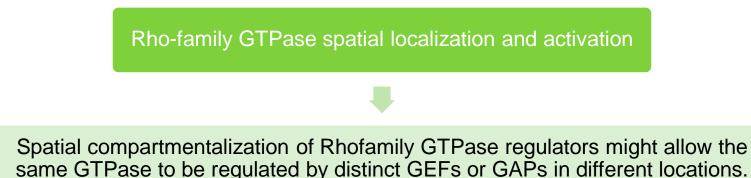
Conclusions

Rho GTPase signaling molecules mutated in X-linked mental retardation (MRX)

Modified from: Linseman et al. (2008), Frontiers in Bioscience.

Rho-GTPases

in CNS diseases


Actin dynamics Conclusions

GEF/GAP/GTPase signalling network combinations are numerous and complex

Multiple GTPases (with antagonistic functions) can be activated in response to the same guidance cue.

There are over 70 GEFs and 80 GAPs described in mammals. Many of them regulate several different Rho-family GTPases, and a particular GTPase might be regulated by numerous GEFs and GAPs that are all residing within the same cell.

How can this complex network of interactions be functionally explained?

Rho GTPases themselves, but also their GEFs and GAPs, are essential regulators of neuronal development.

• Activation of the Rho GTPases under normal conditions depends upon the presence of spatially and temporally regulated Rho GTPase regulators, and it is the fine balance between these regulators that determines the Rho GTPase activity.

 Mutations in several proteins involved in Rho GTPase signaling are causative in some forms of mental retardation.

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis

Dendritic spines

Actin dynamics Conclusions

in CNS diseases

GEF and **GAP** proteins

Gene	Behavioral alterations		Synaptic plasticity	Neuronal morphology	
	Cognition	Other domains			
Rac1/Cdc42 GAPs					
SRGAP3 (MEGAP or	↓ Y-maze (spontaneous	↓ Open field		Alterations of spine length	
WRP)	alternation) ↔ Morris-water maze	↓ Social interaction ↓ Light/dark test		(apical and basal dendrites)	
	↔ Novel object recognition	↓ Plus maze			
	test	↓ PPI spontaneous tics			
	↔ Fear conditioning	(SHIRPA-protocol)			
	-	↔ Conditioned taste			
		aversion			
SRGAP3 (MEGAP or WRP)	↓ Long-term memory in novel object recognition	↔ Sensitivity to foot shock ↔ Rotarod		↓ Mushroom-shaped spine	
VVICE)	test	↔ Anxiety-like responses			
	↓ Morris-water maze (in	w fundery file responses			
	retest and reversal)				
	↓ Passive avoidance				
	↔ Y-maze spontaneous				
BCR and ABR	alternation Mild deficits in:	↔ Open field	↓ Maintenance of LTP	↓ Dendritic spine density	
Dek and ADK	Morris-water maze Novel	\leftrightarrow Plus maze	↓ Maintenance of ETT ↔ PTP	(Slight) ↑ number of spines	
	object recognition test	↔ Rotarod test	\leftrightarrow LTD	(8)	
RhoA GAPs					
OPHN1	1 Morris-water maze	↓ Open field	⊥ PPF	↓ Synapse density	
	•	↔ Light/dark test	↔ LTP	↑ Dendritic protrusion	
		↔ Elevated-Zero-Maze	\leftrightarrow LTD	Immaturity of dendritic	
00004		↓ Social interaction		spines	
OPHN1			↓ LTD		
p190RhoAGAP regulat					
ARG	↓Novel-object-recognition		↓ PPF	↓ Dendrite arbors	
	test		↔ LTP	↓ Synapse density	
			\leftrightarrow LTD		
ABL	↔ Novel-object-recognition		$\downarrow PPF \\ \leftrightarrow LTP$	↓ Total length and branchpoint number of	
	test		↔ LTD	basal dendrites	
	test		4 LID	basar denarites	
Integrin a3	↓ Novel-object-recognition	↓ Body weight on pnd 42		↓ Dendrite arbors	
	test			↓ Synapse density	
Rac1/Cdc42 GEFs					
KALRN	↓ Morris-water-maze	↓ PPI		↓ Spine density	
	↓ Y-maze (spontaneous	↓ Sociability			
	alternation)	↓ Social approach			
	↔ Y-maze (reference	↑ Open field (hyperactivity)			
KALRN	memory) ↓ Contextual fear	Hyperactivity	Modest ↓ in the	↔ Hippocampal spines	
IC LEVI	conditioning	hyperactivity	maintenance of LTP	↓ Cortical spine density	
	↓ Cued fear conditioning		\leftrightarrow LTD		
KALDN	. Noval object recommittee	Anviotu in Flounted	PPF		
KALRN	↔ Novel object recognition task	↓ Anxiety in Elevated zero maze test			
	↑ Passive avoidance	↓ Locomotor activity			
KALRN	↔ Radial arm maze task	↓ Anxiety in Elevated zero	↓ LTP	↓ Hippocampal spine	
	↔ Novel object recognition	maze test	↓ PFP	density	
	test			\leftrightarrow Dendritic length	
	↓ Contextual fear conditioning				
	Conditioning ↓ Passive avoidance				
ARGEF6	Perseveration in	↑ Reactivity to novel	↓ LTP	↓ Spine synapses	
	Morris-water maze	environmental stimuli	↑ LTD	↔ Density of dendrites	
	↓ Complex positional	Disinhibition in object		↑ Dendrite length	
	learning	exploration		↑ Branch points	
				↑ Spine densities Mild alteration in dendritic	
				Mild alteration in dendritic morphology	
				morphology	

De Filippis et al. (2014), Neuroscience and Biobehavioral Reviews.

Rho-GTPases GEFs and GAPs

in CNS diseases

APs Migration

Neuritogenesis

Dendritic spines

Actin dynamics C

Conclusions

GEF and **GAP** proteins

Gene	Behavioral alterations		Synaptic plasticity	Neuronal morphology		
	Cognition	Other domains				
Rac1/Cdc42 GAPs SRGAP3 (MEGAP or WRP)	↓ Y-maze (spontaneous alternation) ↔ Morris-water maze ↔ Novel object recognition test ↔ Fear conditioning	↓ Open field ↓ Social interaction ↓ Light/dark test ↓ Plys maze ↓ PPI spontaneous tics (SHIRPA-protocol) ↔ Conditioned taste aversion		Alterations of spine length (apical and basal dendrites)		
SRGAP3 (MEGAP or WRP)	↓ Long-term memory in novel object recognition test ↓ Morris-water maze (in retest and reversal) ↓ Passive avoidance ↔ Y-maze spontaneous alternation	↔ Sensitivity to foot shock ↔ Rotarod ↔ Anxiety-like responses		↓ Mushroom-shaped spine		
BCR and ABR	Mild deficits in: Morris-water maze Novel object recognition test	 ↔ Open field ↔ Plus maze ↔ Rotarod test 	\downarrow Maintenance of LTP \leftrightarrow PTP \leftrightarrow LTD	↓ Dendritic spine density (Slight) ↑ number of spines		
RhoA GAPs OPHN1	↓ Morris-water maze	↓ Open field ↔ Light/dark test ↔ Elevated-Zero-Maze ↓ Social interaction	$\begin{array}{l}\downarrow PPF\\\leftrightarrow LTP\\\leftrightarrow LTD\end{array}$	↓ Synapse density ↑ Dendritic protrusion Immaturity of dendritic spines	GAP	GEK
OPHN1			↓ LTD			
p190RhoAGAP regulat ARG	↓Novel-object-recognition test		$\begin{array}{l}\downarrow PPF\\\leftrightarrow LTP\\\leftrightarrow LTD\end{array}$	↓ Dendrite arbors ↓ Synapse density		
ABL	↔ Novel-object-recognition test		$\begin{array}{c}\downarrow PPF\\\leftrightarrow LTP\\\leftrightarrow LTD\end{array}$	↓ Total length and branchpoint number of basal dendrites	Rho	Rho
Integrin α3	↓ Novel-object-recognition test	\downarrow Body weight on pnd 42		↓ Dendrite arbors ↓ Synapse density	GTPase	GTPase
Rac1/Cdc42 GEFs KALRN	↓ Morris-water-maze ↓ Y-maze (spontaneous alternation) ↔ Y-maze (reference memory)	↓ PPI ↓ Sociability ↓ Social approach ↑ Open field (hyperactivity)		↓ Spine density		
KALRN	↓ Contextual fear conditioning ↓ Cued fear conditioning	Hyperactivity	Modest↓ in the maintenance of LTP ↔ LTD ↓ PPF	 ↔ Hippocampal spines ↓ Cortical spine density 		
KALRN	↔ Novel object recognition task ↑ Passive avoidance	↓ Anxiety in Elevated zero maze test ↓ Locomotor activity	1 FVF			
KALRN	 ↔ Radial arm maze task ↔ Novel object recognition test ↓ Contextual fear conditioning 	↓ Anxiety in Elevated zero maze test	↓ LTP ↓ PFP	↓ Hippocampal spine density ↔ Dendritic length		
ARGEF6	↓ Passive avoidance Perseveration in Morris-water maze ↓ Complex positional learning	↑ Reactivity to novel environmental stimuli Disinhibition in object exploration	↓ LTP ↑ LTD	↓ Spine synapses ↔ Density of dendrites ↑ Dendrite length ↑ Branch points ↑ Spine densities Mild alteration in dendritic		

morphology

De Filippis et al. (2014), Neuroscience and Biobehavioral Reviews.

Rho-GTPases

in CNS diseases

Ps Migration

Neuritogenesis

Dendritic spines

The Journal of Neuroscience, April 1, 2001, 21(7):2361-2372

Actin dynamics Conc

Conclusions

Tiam1, a Rac1-specific GEF, promotes axon formation

Evidence for the Involvement of Tiam1 in Axon Formation Patricia Kunda,¹ Gabriela Paglini,¹ Santiago Quiroga,² Kenneth Kosik,³ and Alfredo Cáceres¹ 1Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET), 5000 Cordoba, Argentina, 2Departamento Química Bíologica (CIQUIBIC-CONICET), Universidad Nacional Córdoba, 5000 Córdoba, Argentina, and ³Department of Neurology (Neuroscience), Harvard Medical School and Center for Neurological Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 The EMBO Journal (2004) 23, 1075–1088 | © 2004 European Molecular Biology Organization | All Rights Reserved 0261-4189/04 THE www.embojournal.org EMBO JOURNAL Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2 Masamitsu Tanaka^{1,2}, Riuko Ohashi^{1,3}, Ritsuko Nakamura¹, Kazuya Shinmura¹, Takaharu Kamo¹, Ryuichi Sakai² and Haruhiko Sugimura^{1,*} ¹First Department of Pathology, Hamamatsu University School of Medicine, Handayama, Hamamatsu, Japan and ²Growth Factor Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku Tokyo, Japan

Overexpression of Tiam1 promotes the formation of several long, thin axon-like processes.

Suppression of Tiam1 prevents axon formation.

Rho-GTPases GEFs and GAPs

d GAPs Migration

Neuritogenesis

Dendritic spines

Actin dynamics Co

Conclusions

in CNS diseases

CAMGAP1

Cdc42, Rac1

Why are there so many GAPs?

	Specificity			Specificity	
Name	In vitro	In vivo	Name	In vitro	In vivo
p50RhoGAP	Cdc42, Rac1, RhoA	RhoA	Myosin-IXb	RhoA	ND
BPGAP1	Cdc42, RhoA	RhoA	Myr5	Cdc42, RhoA, Rac1	RhoA
Bcr	Cdc42, Rac1, Rac2	Rac1	Myr7	RhoA	RhoA
Abr	Cdc42, Rac1, Rac2	ND	ArhGAP10	Cdc42, RhoA, Rac1	ND
mCdGAP	Cdc42, Rac1	Cdc42, Rac1	XrGAP	ND	ND
TCGAP	Cdc42, Rac1, RhoA	No activity	CeGAP	Rac1, Cdc42, RhoA	ND
GRIT	Cdc42, Rac1, RhoA	Cdc42, Rac1, RhoA			
hCdGAP	Cdc42, Rac1	Cdc42, Rac1	MgcRacGAP	Rac1, Cdc42, RhoA	Cdc42, R
d-CdGAPr	ND	ND	RnGAP	Rac1, Cdc42	Rac1, Cd
ARAP1	Cdc42, Rac1, RhoA	RhoA	DRacGAP	ND	Rac1, Cd
ARAP2	ND	ND	CYK-4	Rac1, Cdc42, RhoA	ND
ARAP3	Cdc42, Rac1, RhoA	RhoA	RARhoGAP	RhoA	RhoA
ARAP3	RhoA	RhoA	tGAP1	No activity	ND
srGAP1	ND	Cdc42, RhoA	FIIGAP	Cdc42, Rac1	Cdc42, R
srGAP2	ND	ND	p73RhoGAP	ND	RhoA
srGAP3	Rac1, Cdc42	ND	p68RacGAP	Rac1	Rac1
p115	ND	RhoA			
ρ85-α	None	None	ArhGAP6	RhoA	RhoA
p85-β	ND	ND	OCRL-1	Rac1	Rac1
RIP1	Cdc42, Rac1	ND	Vilse	Rac1, Cdc42	Rac1, Cd
RalBP1	Cdc42, Rac1	ND	SYD-1	None	ND
RLIP76	Cdc42, Rac1	ND			
DLC-1	RhoA, Cdc42	ND	p190-A	Rac1, Cdc42, RhoA	RhoA
DLC-2	RhoA, Cdc42	RhoA	р190-В	Rac1, Cdc42, RhoA	ND
p122RhoGAP	RhoA	RhoA	p190	ND	RhoA
RhoGAP80C	ND	Rho1, Rac1, Rac2	Sac7p	Rho1p	Rho1p
α1-Chimaerin	Rac1	Rac 1	Bag7p	Rho1p	Rho1p
β1-Chimaerin	Rac1	ND	Rga1p	Cdc42	Cdc42p
RICH-1	Cdc42, Rac1	Cdc42, Rac1		Cdc42	Cdc42p
RICH-2	Cdc42, Rac2	ND	Rga2p		
Nadrin	Cdc42, Rac1, RhoA	ND	Bem3p	Cdc42p	Cdc42p
3BP-1	Cdc42, Rac1	Rac1	Lrg1p	Cdc42p, Rho2p	ND
Oligophrenin-1	Cdc42, Rac1, RhoA	RhoA, Cdc42	Bem2p	Rho1p	Rho1p
Graf	Cdc42, RhoA	RhoA	Rgd1p	Rho3p, Rho4p	Rho3p
Graf-2	Cdc42, RhoA	ND	. .		
PSGAP	RhoA, Cdc42	RhoA, Cdc42	Rgd2p	Cdc42p, Rho5p	ND
GMIP	RhoA	RhoA	DdRacGAP1	DdRac1A, DdRacC	ND
PARG1	Cdc42, Rac1, RhoA	RhoA			
ArhGAP9	Cdc42, Rac1, RhoA	ND			
ArhGAP12	ND	ND			
Arhgap15	Rac1	Rac1			
0.11.0.1.0.1	Ode 40 Deed	100	Tala a di a -i i		0007) Die Oe

ND

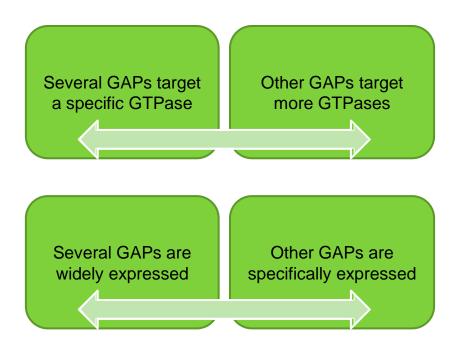
Tcherkezian and Lamarche-Vane (2007), Bio. Cell.

in CNS diseases

APs Migration

Neuritogenesis

Dendritic spines


Actin dynamics Con

Conclusions

Why are there so many GAPs?

The over-abundance of GAPs indicates that:

- each GAP may play a specialized role;
- each GAP activity may be precisely regulated, spatially and temporally.

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis

Dendritic spines

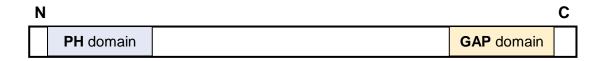
Actin dynamics

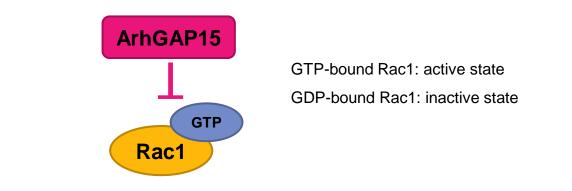
Conclusions

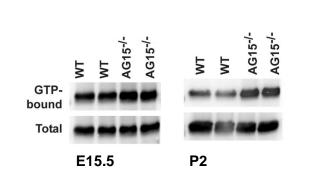
in CNS diseases

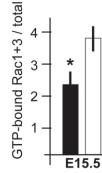
Why are there so many GAPs?

	Specificity			Specificity	
lame	In vitro	In vivo	Name	In vitro	In vivo
50RhoGAP	Cdc42, Rac1, RhoA	RhoA	Myosin-IXb	RhoA	ND
3PGAP1	Cdc42, RhoA	RhoA	Myr5	Cdc42, RhoA, Rac1	RhoA
Bor	Cdc42, Rac1, Rac2	Rac1	Myr7	RhoA	RhoA
br	Cdc42, Rac1,Rac2	ND	ArhGAP10	Cdc42, RhoA, Rac1	ND
nCdGAP	Cdc42, Rac1	Cdc42, Rac1	XrGAP	ND	ND
CGAP	Cdc42, Rac1, RhoA	No activity	CeGAP	Rac1, Cdc42, RhoA	ND
GRIT	Cdc42, Rac1, RhoA	Cdc42, Rac1, RhoA	MgcRacGAP	Rac1, Cdc42, RhoA	Cdc42, Rh
CdGAP	Cdc42, Rac1	Cdc42, Rac1	RIGAP	Rac1, Cdc42, HIGA	Rac1, Cdc
d-CdGAPr	ND	ND	DRacGAP	ND	Rac1, Cdc
ARAP1	Cdc42, Rac1, RhoA	RhoA	CYK-4	Rac1, Cdc42, RhoA	ND
ARAP2	ND	ND			
ARAP3 ARAP3	Cdc42, Rac1, RhoA RhoA	RhoA RhoA	RARhoGAP tGAP1	RhoA	RhoA ND
			IGAPT	No activity	ND
srGAP1	ND ND	Cdc42, RhoA	Filgap	Cdc42, Rac1	Cdc42, Ra
srGAP2 srGAP3	Rac1, Cdc42	ND ND	p73RhoGAP	ND	RhoA
p115	ND	RhoA	p68RacGAP	Rac1	Rac1
085-α	None	None	ArhGAP6	RhoA	RhoA
x85-β	ND	ND	OCRL-1	Rac1	Rac1
RIP1	Cdc42, Rac1	ND	Vilse	Rac1, Cdc42	Rac1, Cdc
alBP1	Cdc42, Rac1	ND			
LIP76	Cdc42, Rac1	ND	SYD-1	None	ND
DLC-1	RhoA, Cdc42	ND	p190-A	Rac1, Cdc42, RhoA	RhoA
LC-2	RhoA, Cdc42	RhoA	p190-B	Rac1, Cdc42, RhoA	ND
122RhoGAP	RhoA	RhoA	p190	ND	RhoA
RhoGAP80C	ND	Rho1, Rac1, Rac2	Sac7p	Rho1p	Rho1p
x1-Chimaerin	Rac1	Rac 1	Bag7p	Rho1p	Rho1p
31-Chimaerin	Rac1	ND	Rga1p	Cdc42	Cdc42p
RICH-1	Cdc42, Rac1	Cdc42, Rac1	Rga2p	Cdc42	Cdc42p
RICH-2	Cdc42, Rac2	ND	Bem3p	Cdc42p	Cdc42p
Nadrin	Cdc42, Rac1, RhoA	ND	Lrg1p	Cdc42p, Rho2p	ND
BP-1	Cdc42, Rac1	Rac1			
Dligophrenin-1	Cdc42, Rac1, RhoA	RhoA, Cdc42	Bem2p	Rho1p	Rho1p
Graf Graf-2	Cdc42, RhoA Cdc42, RhoA	RhoA ND	Rgd1p	Rho3p, Rho4p	Rho3p
Brai-2 PSGAP	RhoA, Cdc42	RhoA, Cdc42	Rgd2p	Cdc42p, Rho5p	ND
	RhoA		DdRacGAP1	DdRac1A, DdRacC	ND
GMIP PARG1	Cdc42, Rac1, RhoA	RhoA RhoA			
Ang Pang Pang Pang Pang Pang Pang Pang Pa	Cdc42, Rac1, RhoA	ND			
INGAPY	CUC42. Hac1. HIDA	NU			
idap15	Rac1	Rac1			
CAMGAP1	Cdc42, Hac1	ND		Tcherkezian and Lama	rcha-Vana (200

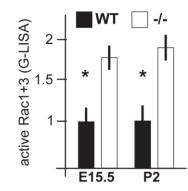

Tcherkezian and Lamarche-Vane (2007), Bio. Cell.


in CNS diseases


GAPs Migration


Neuritogenesis

ArhGAP15, a Rac-specific GAP



*

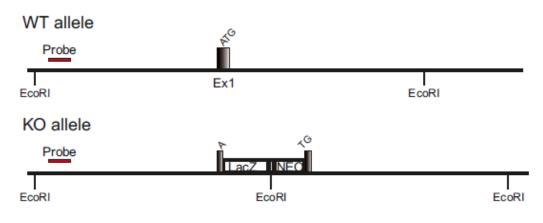
P2

Zamboni et al. (2016), Scientific Reports.

Rho-GTPases GEFs and GAPs

in CNS diseases

Migration


Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

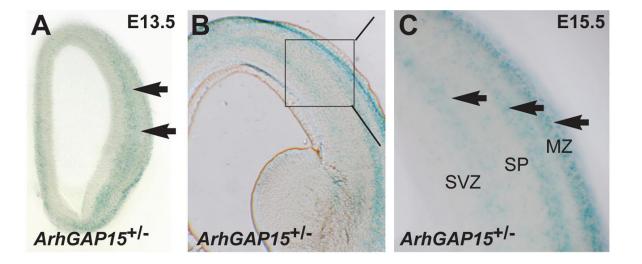
ArhGAP15 KO mouse

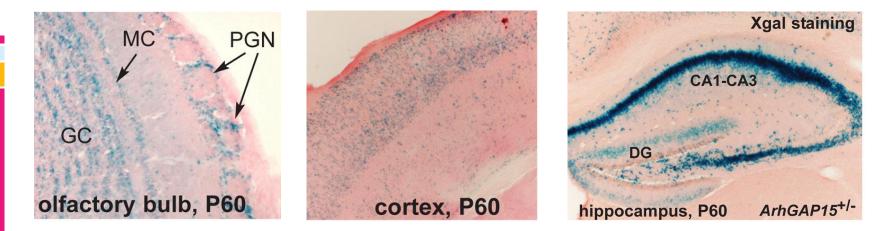
Modified from: Costa et al. (2011), Blood.

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration


Neuritogenesis


Dendritic spines

Actin dynamics C

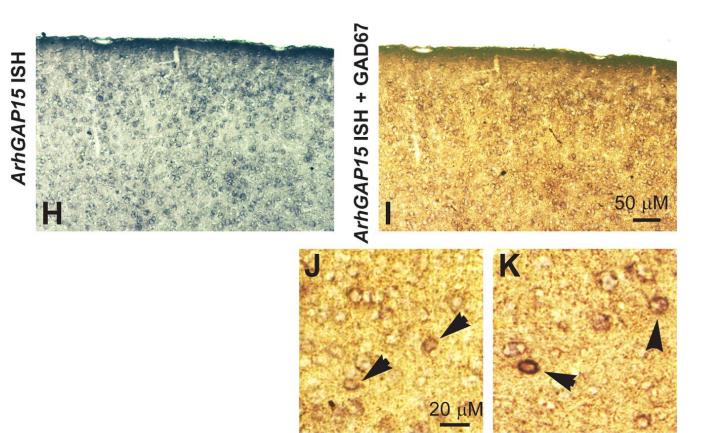
Conclusions

ArhGAP15 expression in the brain

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration


Neuritogenesis

Dendritic spines

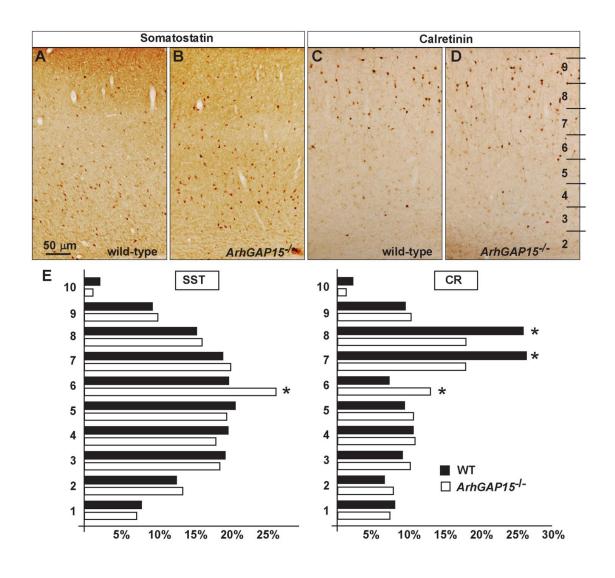
Actin dynamics

Conclusions

ArhGAP15 is expressed in interneurons

in CNS diseases

APs Migration


Neuritogenesis

Dendritic spines

Actin dynamics Co

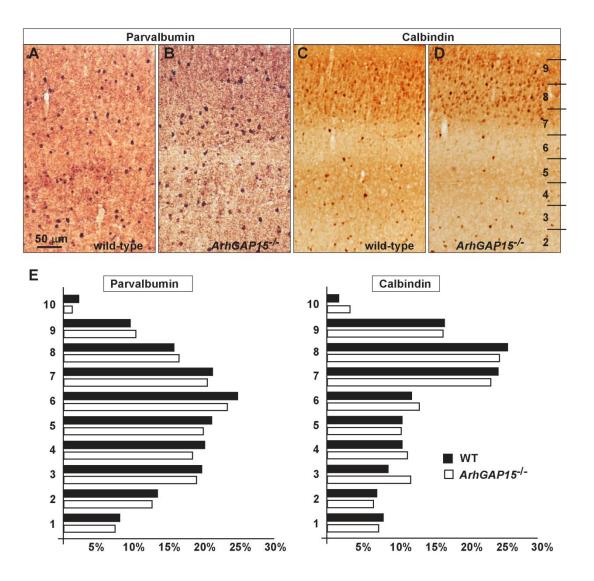
Conclusions

Stratification of adult cortical interneurons is altered in the absence of *ArhGAP15*

Rho-GTPases GEFs and GAPs

in CNS diseases

APs Migration


Neuritogenesis

Dendritic spines

Actin dynamics Co

Conclusions

Stratification of adult cortical interneurons is altered in the absence of *ArhGAP15*

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

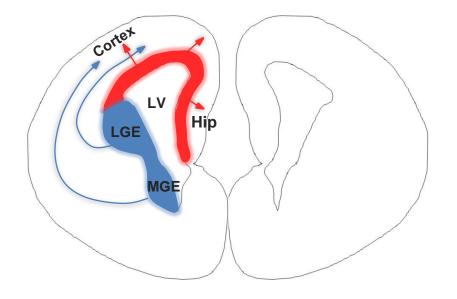
in CNS diseases

Does the loss of ArhGAP15 affect neuronal migration?

Rho-GTPases GE

in CNS diseases

GEFs and GAPs Migration


Neuritogenesis

Dendritic spines

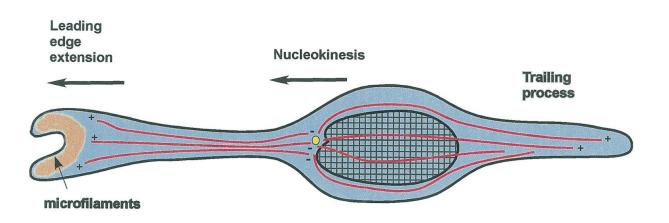
Actin dynamics C

Conclusions

Neuronal migration during brain development

Glutamatergic excitatory neurons: radial migration GABA+ interneurons: tangential migration Rho-GTPases in CNS diseases

Migration

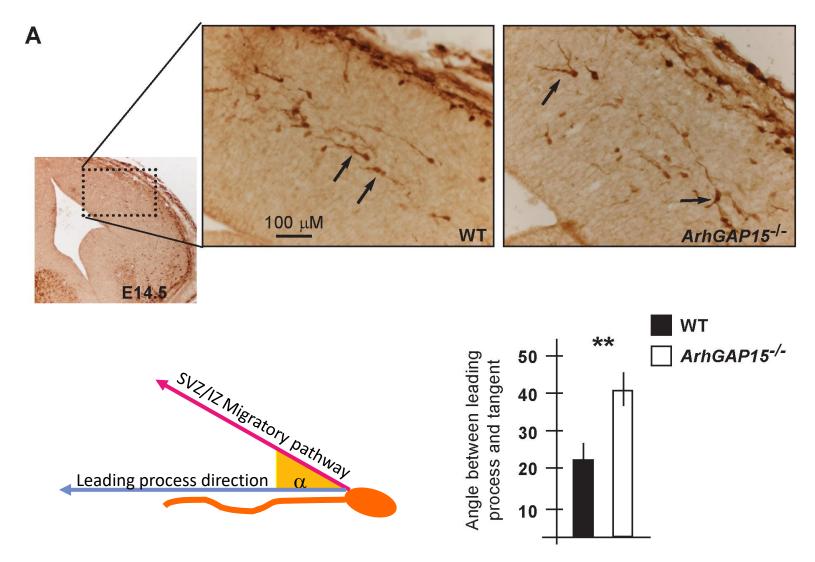

Neuritogenesis

Dendritic spines

Actin dynamics Con

Conclusions


Neuronal migration is a key feature of nervous system development


Neuronal migration occurs in three stages:

- 1. Leading Edge Extension
- 2. Nuclear Translocation (Nucleokinesis)
- 3. Retraction of Trailing Process

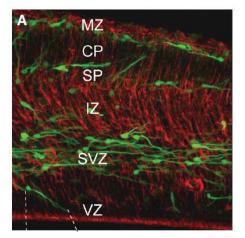
C. Lambert de Rouvroitl and A.M. Gofffinet (2002), Mechanisms of development.

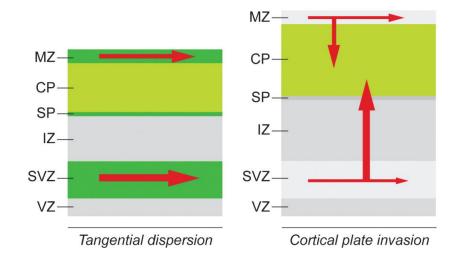
The loss of *ArhGAP15* affects the directionality during tangential migration of interneurons, *in vivo*

The hyperactivation of Rac1 alters the control of cell directionality during tangential migration.

Rho-GTPases GEFs and GAPs

Migration


Neuritogenesis


Dendritic spines

Actin dynamics Conclusions

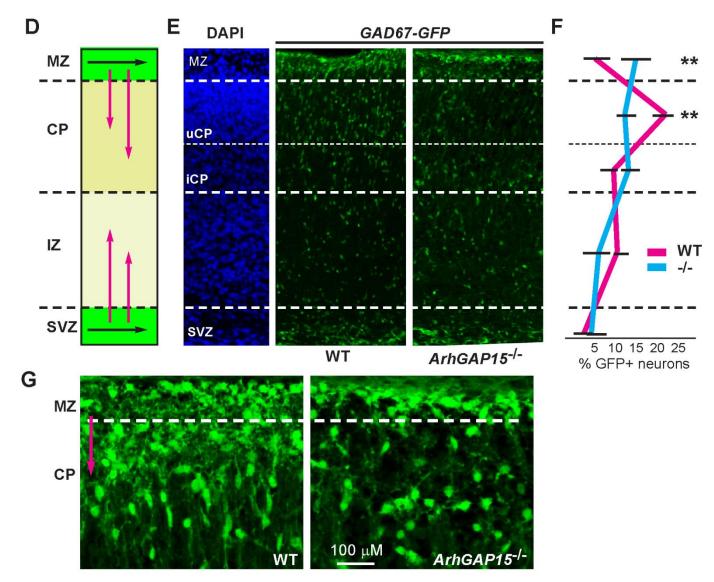
in CNS diseases

Migratory streams and intracortical dispersion of interneurons

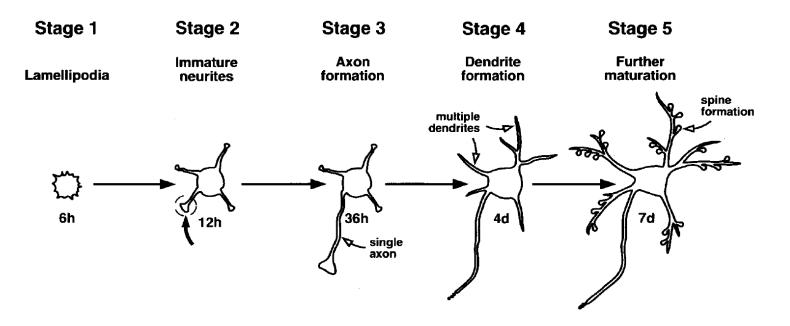
Oscar Marin (2013), European Journal of Neuroscience.

Rho-GTPases GEFs and GAPs

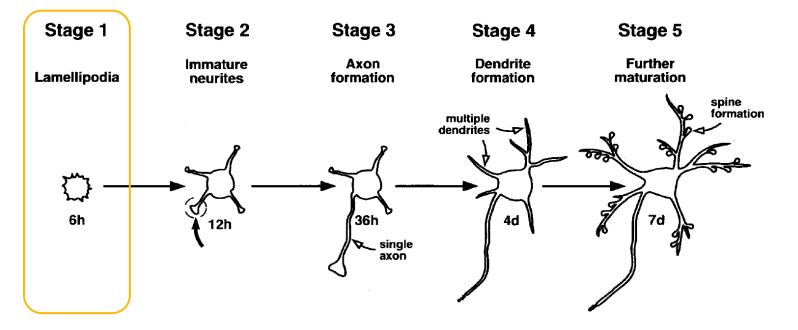
in CNS diseases

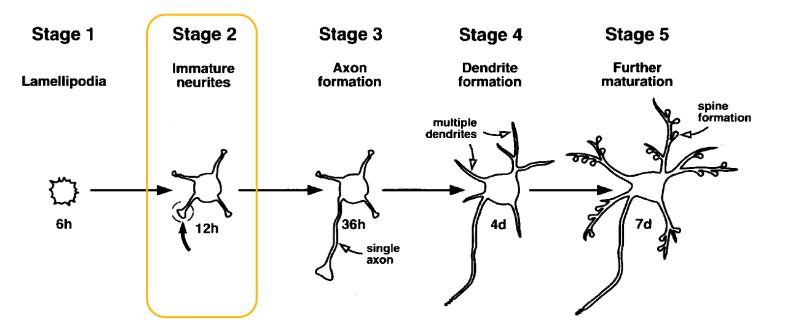

APs Migration

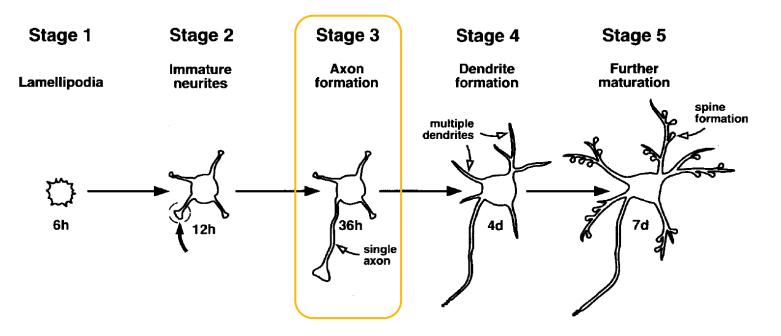
Neuritogenesis


Actin dynamics

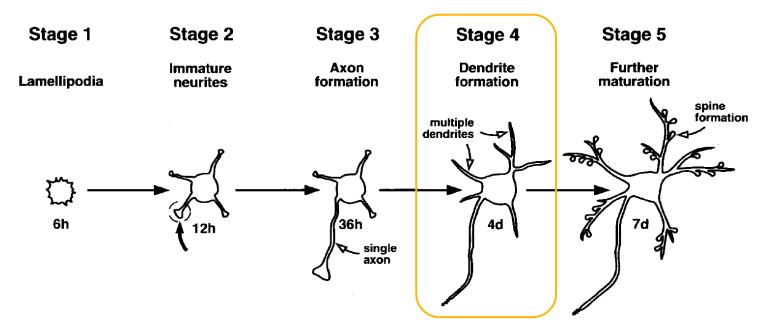
Conclusions


The loss of *ArhGAP15* affects the directionality during migration of interneurons

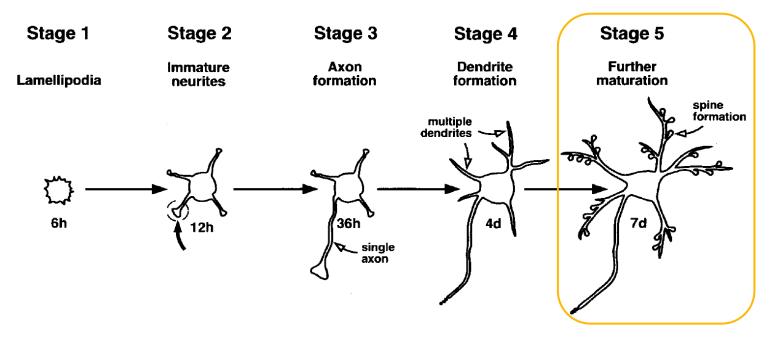

Stages of neuronal development


Stages of neuronal development

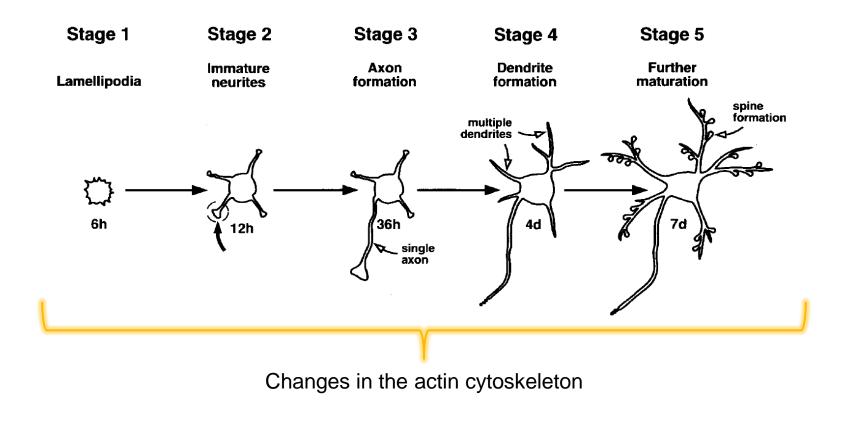
Stages of neuronal development



Stages of neuronal development


Govek et al. (2005), Genes & Development.

Stages of neuronal development



Govek et al. (2005), Genes & Development.

Stages of neuronal development

Stages of neuronal development

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

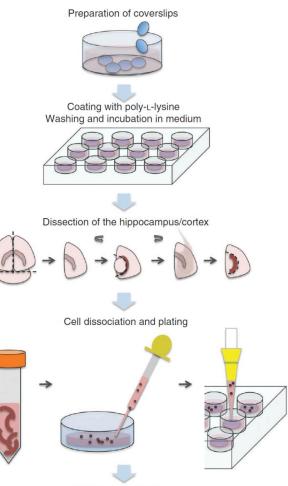
in CNS diseases

Are migration defects caused by alteration in neuronal morphology and neuritogenesis during development?

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration


Neuritogenesis

Dendritic spines

Actin dynamics Conclusions

Primary neuronal cultures

Primary neuronal cultures are powerful model systems used to study neuronal morphology and differentiation, synaptic function and neurotransmitter release.

Maintenance of neurons

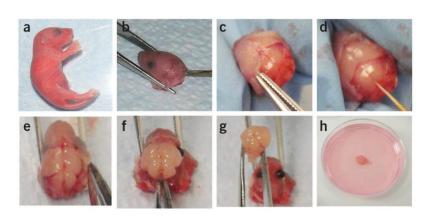
Gerard M J Beaudoin III et al. (2012), Nature Protocols.

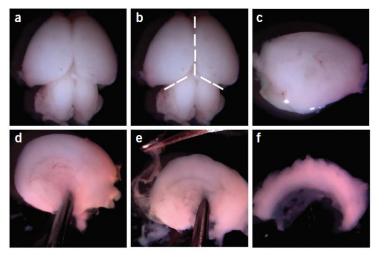
Rho-GTPases GEFs and GAPs

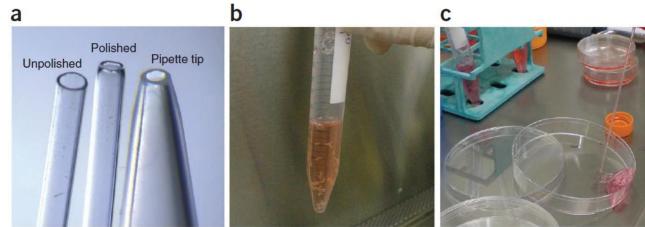
in CNS diseases

GAPs Migration

Neuritogenesis


Dendritic spines


Actin dynamics Con


Conclusions

Primary neuronal cultures

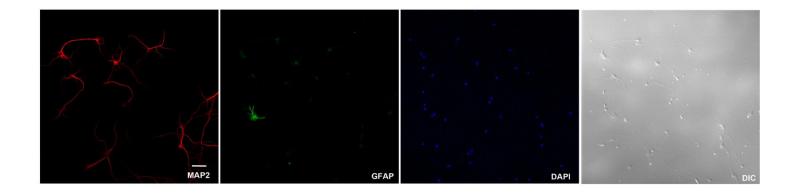
Dissection \rightarrow dissociation \rightarrow plating and maintenance

Gerard M J Beaudoin III et al. (2012), Nature Protocols.

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis


Dendritic spines


Actin dynamics

Conclusions

in CNS diseases

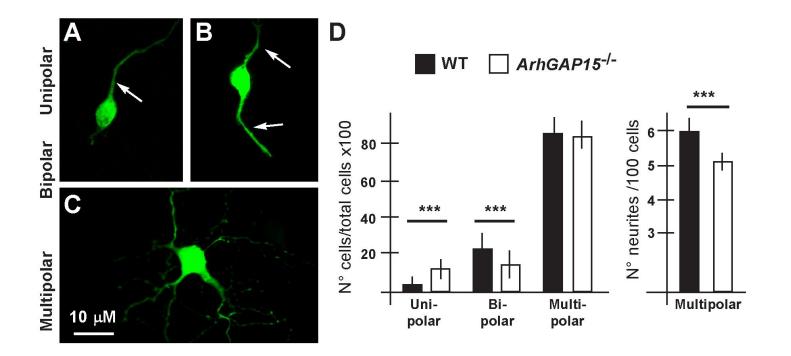
Primary neuronal cultures are well characterized

Gerard M J Beaudoin III et al. (2012), Nature Protocols.

Rho-GTPases GEFs and GAPs

in CNS diseases

Ps Migration


Neuritogenesis

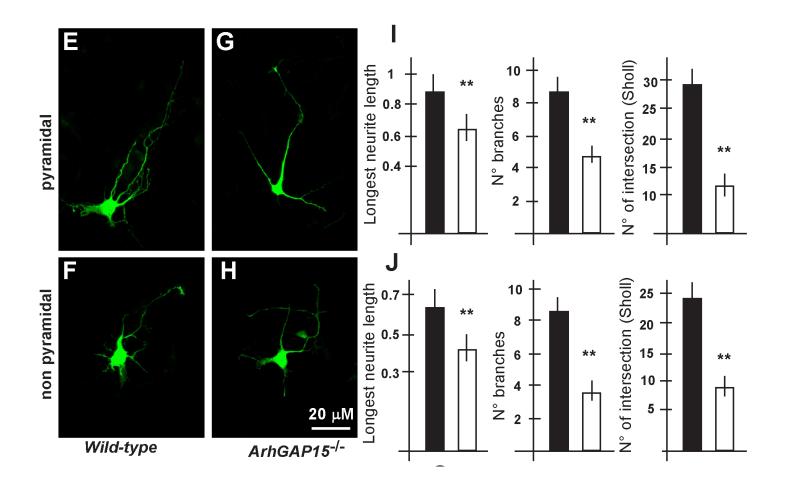
Dendritic spines

Actin dynamics

Conclusions

ArhGAP15 is required by immature cortical neurons to achieve a more elaborated morphology

in CNS diseases


Neuritogenesis

Dendritic spines

Actin dynamics Co

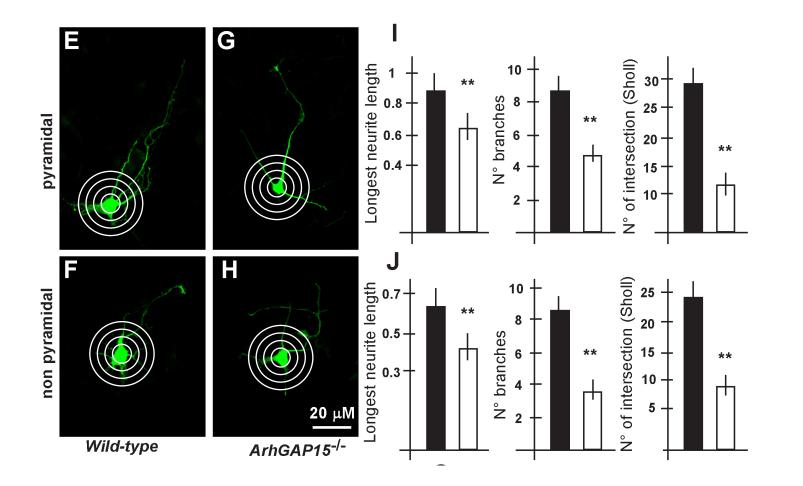
Conclusions

Reduced efficiency of neurite elongation and branching of cortical neurons in the absence of *ArhGAP15*

Rho-GTPases GEFs and GAPs

in CNS diseases

APs Migration


Neuritogenesis

Dendritic spines

Actin dynamics C

Conclusions

Reduced efficiency of neurite elongation and branching of cortical neurons in the absence of *ArhGAP15*

Rho-GTPases GEFs and GAPs

Migration

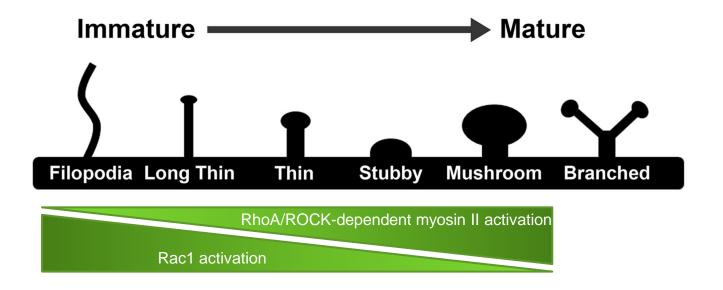
Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

in CNS diseases


Do the loss of ArhGAP15 affect spinogenesis?

in CNS diseases

Actin dynamics Conclusions

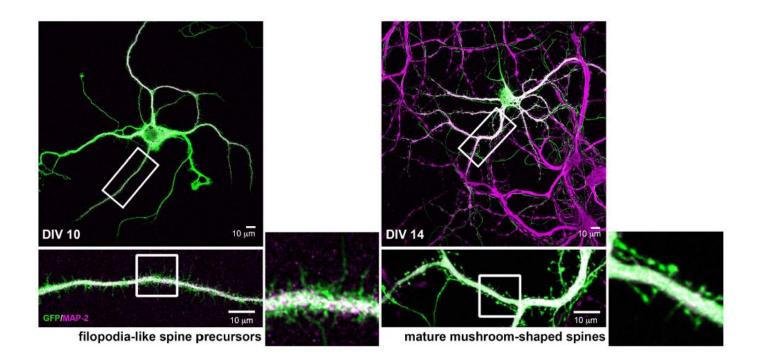
RhoGTPase regulators orchestrate distinct stages of synaptic development

Rac1 promotes the formation of filopodia-like spine precursors that subsequently mature through RhoA/ROCK-dependent myosin II activation into polarized mushroom-shape spines.

Rho-GTPases GEFs and GAPs

in CNS diseases

Ps Migration


Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

How RhoGTPase regulators function throughout synaptic development?

Martin-Vilchez et al. (2017), PLOS ONE.

in CNS diseases

enesis Der

Dendritic spines

Actin dynamics

Conclusions

How RhoGTPase regulators function throughout synaptic development?

	RhoGTPase Target	Proteome ID	Known Synaptic Function(s)	Neuronal Disease Association	Chromosome Location	Autism-Associated Copy Number Variants *
GEFs						
FRABIN (FDG4)	Cdc42 [53]	[28]	• Unknown	Mutated in Charcot-Marie Tooth [<u>37,38</u>]	12p11.21 (32,655,040– 32,798,983)	Deletion in Autism with Scoliosis Case [54] 6 Duplications [55] 4 Duplications and 1 Deletion [56] • 1 Reported Duplication in each publication [57,58] • 1 Deletion [54]
ARHGEF9 (COLLYBISTIN)	Cdc42 [59]	[31]	• Promotes inhibitory synapse formation through gephyrin clustering [26,27]	X-linked Mental Retardation [<u>60,61</u>]	Xq11.1 (62,854,848– 63,005,426)	• 2 Duplications and 1 Deletion [56]
ARHGEF7 (β-PIX)	Rac [<u>62]</u>	[28,31]	Promotes synaptic vesicle recruitment [63] Increases synaptic Rac activity, resulting in increased dendritic protrusions [5,23]	Mutations in β-PIX isoform (on X Chromosome) result in non-syndromic mental retardation [64]	13q34 (111,767,624– 111,958,081)	 24 Deletions and 1 Duplication [65] 16 Deletions and 16 Duplications [56] 1 Deletion and 1 Duplication [55] 1 Reported Deletion in each publication [57,58,66] 1 Duplication and 1 Unspecified CNV Reported [67] 1 Duplication [19]
VAV2	Rac (can also regulate Cdc42 and RhoA <i>in vitro</i>) [68]	[31]	Promotes dendritic development [69,70] Activated in Response to BDNF and increases spine head size [71]	None Reported	9q34.1 (136,627,016– 136,857,726)	 12 Duplications [56] 1 Reported Duplication in each publication [72,73] 1 Deletion [74] 1 Deletion [19]

in CNS diseases

Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

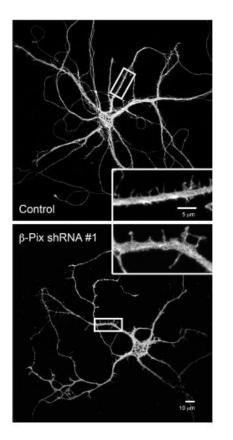
How RhoGTPase regulators function throughout synaptic development?

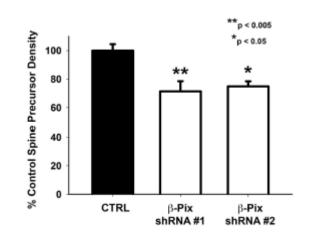
	RhoGTPase Target	Proteome ID	Known Synaptic Function(s)	Neuronal Disease Association	Chromosome Location	Autism-Associated Copy Number Variants*
GAPs						
ARHGAP23	• unknown	[32]	• Unknown	None Reported	17q12 (36,584,719– 36,668,627)	• 1 Reported Duplication in each publication [56,75] • 1 Duplication and 1 Deletion [65]
OLIGOPHRENIN-1	RhoA	N/A	• Regulates activity- dependent strengthening of excitatory synapses through interaction with Homer [76] • Regulates spine length and maturation [15,18]	X-linked Mental Retardation [<u>16</u>]	Xq12 (67262186– 67653299	• 36 Duplications and 11 Deletions [56] • 3 Duplications [77] • 1 Reported Duplication in each publication [78–80] • 1 Mosaic Duplication [74] • 1 Reported Deletion in each publication [57,81]

Rho-GTPases GEFs and GAPs

Ps Migration

Neuritogenesis


Dendritic spines


Actin dynamics Con

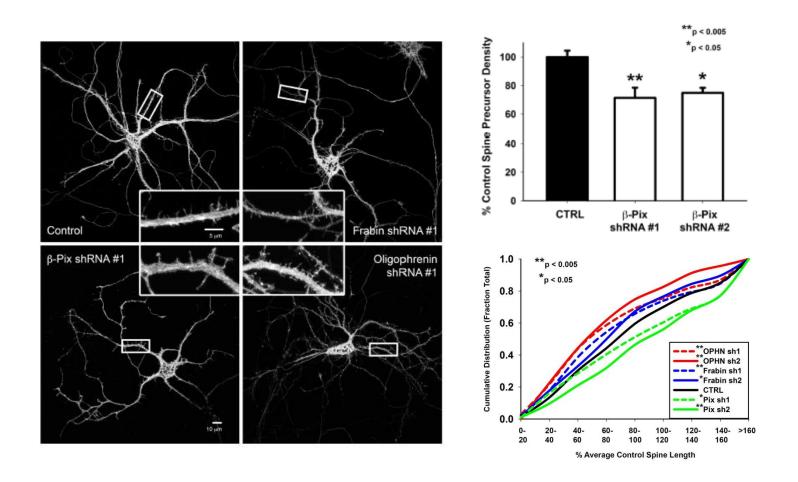
Conclusions

in CNS diseases

The Rac1 GEF, β -PIX, drives spine precursor formation

Rho-GTPases GEFs and GAPs

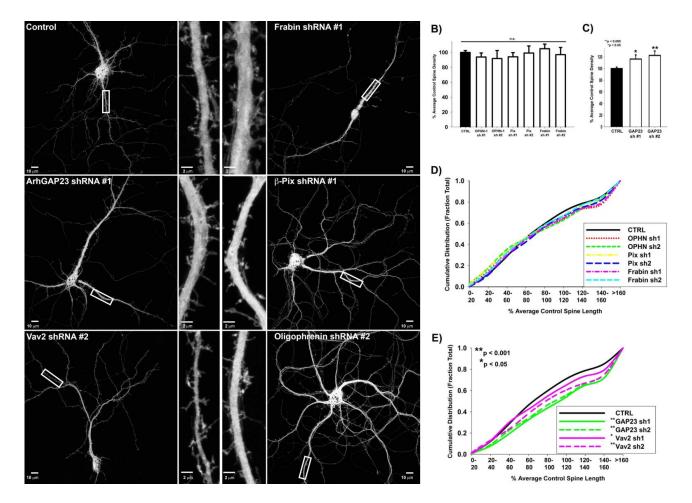
in CNS diseases


GAPs Migration

Neuritogenesis

Dendritic spines

Actin dynamics Conclusions


Balanced RhoA and Cdc42 activities regulate spine precursor elongation

Introduction Rho-GTPases GEFs and GAPs Migration Neuritogenesis Dendritic spines Actin dynamics Conclusions

ArhGAP23 promotes spine maturation

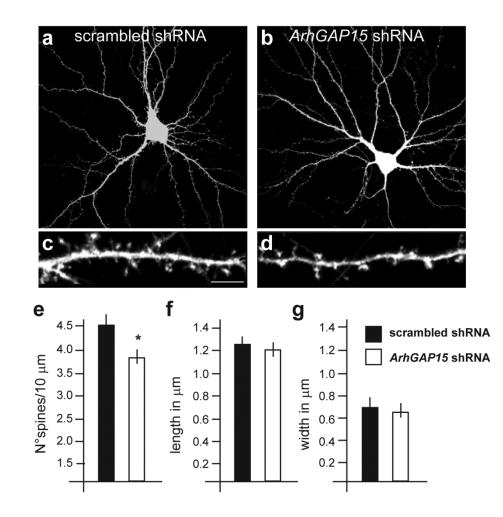
While actin polymerization drives spine precursor formation, RhoA/ROCK-mediated myosin II activation is necessary for spine maturation into a polarized mushroom-shape.

Martin-Vilchez et al. (2017), PLOS ONE.

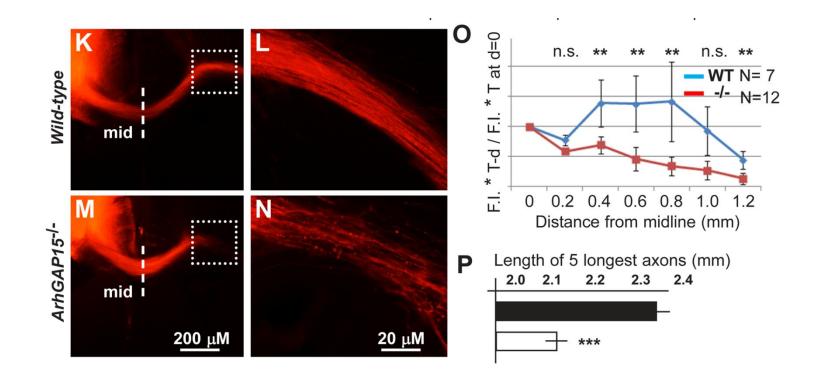
Rho-GTPases GEFs and GAPs

APs Migration

Neuritogenesis


Dendritic spines

Actin dynamics Con


Conclusions

in CNS diseases

Reduced spine density upon downmodulation of ArhGAP15

Cortical callosal axons are retarded in ArhGAP15^{-/-} neonatal brain

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

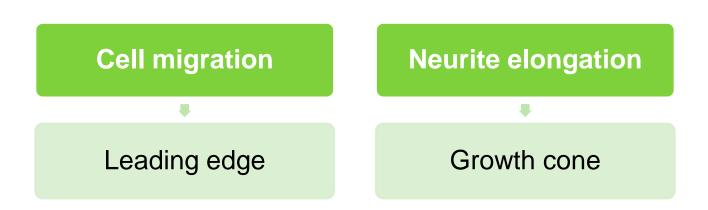
in CNS diseases

Are reduced neuritogenesis and axonogenesis linked to altered actin dynamic at the growth cone?

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration


Neuritogenesis

Dendritic spines

Actin dynamics Co

Conclusions

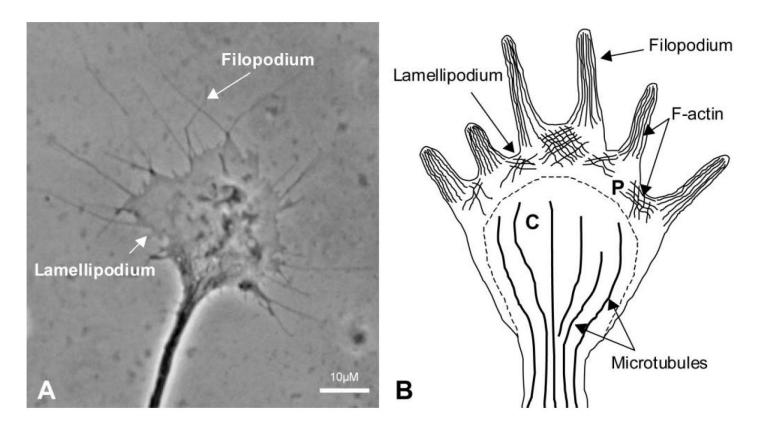
Actin remodeling in neurons

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration

Neuritogenesis

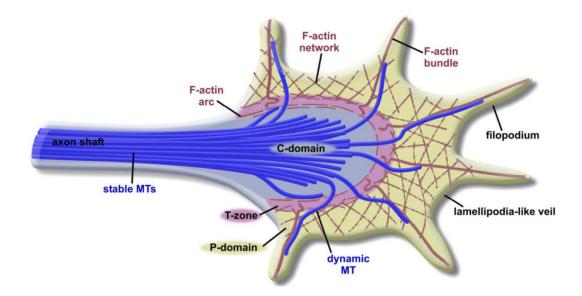

Dendritic spines

Actin dynamics Con

Conclusions

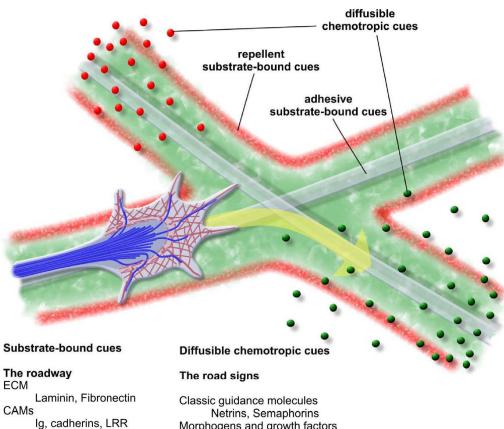
The neuronal growth cone: the structure

The **filopodia** contain bundles of actin filaments (F-actin). The **lamellipodia** are flat regions of dense actin meshwork.


Ravine A. Gungabissoon and James R. Bamburg (2003), The Journal of Histochemistry & Cytochemistry.

The neuronal growth cone: the structure

The **peripheral domain** is the region surrounding the outer edge of the growth cone, and it is composed of an actin-based cytoskeleton.


The **central domain** is located in the center of the growth cone, and it is composed of a microtubule-based cytoskeleton.

The **transitional domain** is located in the thin band between the central and peripheral domains.

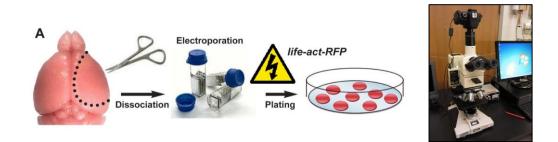
Directions for the trip

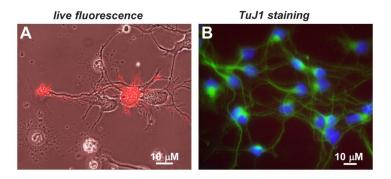
Roadway guardrails Slits, Ephrins Chondroitin sulfate proteoglycans Classic guidance molecules Netrins, Semaphorins Morphogens and growth factors Wnt, Shh, BMP, BDNF Neurotransmitters Secreted transcription factors

Lowery and Van Vactor (2009), Nat Rev Mol Cell Biol.

Rho-GTPases in CNS diseases GEFs and GAPs Migration

Neuritogenesis


Dendritic spines


Actin dynamics Co

Conclusions

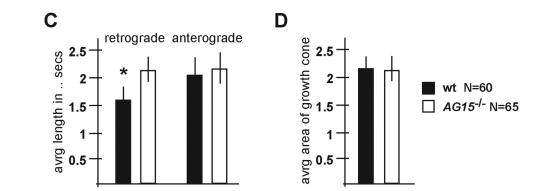
Analyses of actin cytoskeleton dynamics

Live imaging of the actin cytoskeleton is crucial for the study of many biological processes.

Rho-GTPases GEFs and GAPs

in CNS diseases

APs Migration


Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

Retrograde actin flow is increased in the absence of *ArhGAP15*

Rho-GTPases GEFs and GAPs

in CNS diseases

GAPs Migration

Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

Retrograde actin flow is increased in the absence of *ArhGAP15*

Wild-type

ArhGAP15 KO

Rho-GTPases GEFs and GAPs

GAPs Migration

Neuritogenesis

Dendritic spines

Conclusions

in CNS diseases

Cytoskeletal dynamics

Growth cone motility and protrusion of the leading edge membrane depend on the dynamic properties of actin.

Actin filaments are polarized polymers composed of actin monomers and their formation, stability and destruction are carefully regulated at every stage.

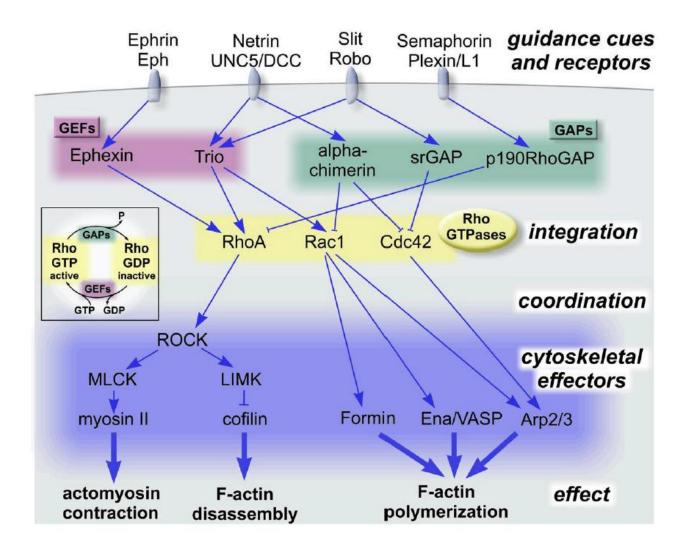
Changes in equilibria of polymerization dynamics depend on whether ATP or ADP is associated with actin. ATP-actin is usually added to the **`plus' (or barbed) end**. ATP hydrolyzes to form ADP-actin, and ADP-actin disassembled at the **`minus' (or pointed) end**.

Actin Filaments

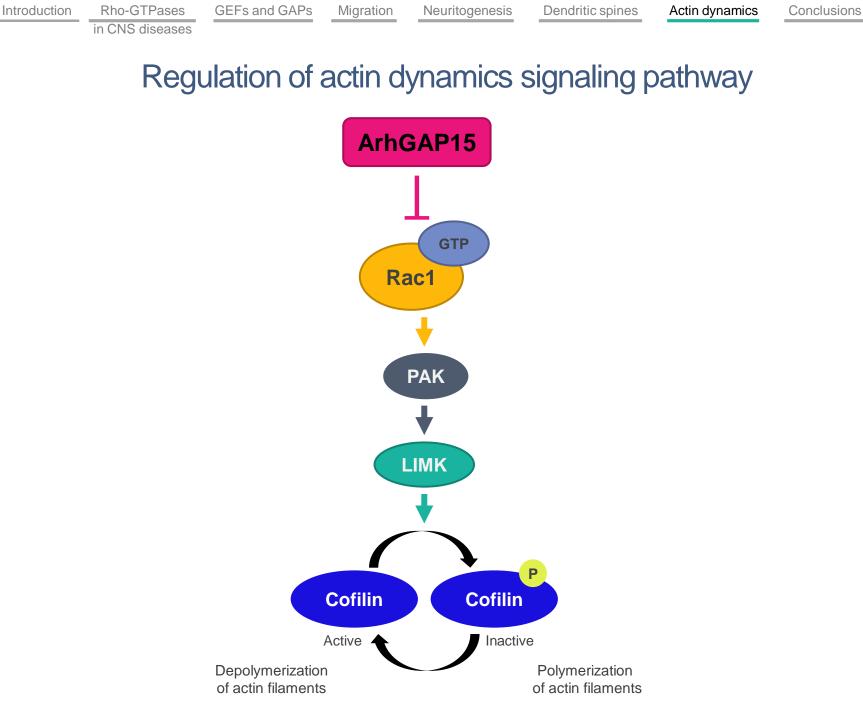
Types of Actin-binding proteins

- monomer binding proteins that either promote growth by adding to barbed end (profilin) or inhibit growth by sequestering (beta-thymosin)
- F-actin capping proteins that block growth (*neuromodulin*) or block disassembly (*Ena/VASP*)
- F-actin severing proteins (ADF/cofilin)
- F-actin stabilization proteins (tropomyosin)

Rho-GTPases GEF


in CNS diseases

GEFs and GAPs Migration


Neuritogenesis

Conclusions

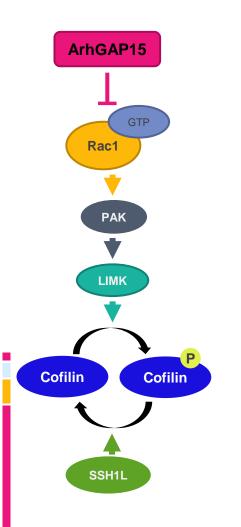
The growth cone as a `navigator'

Lowery and Van Vactor (2009), Nat Rev Mol Cell Biol.

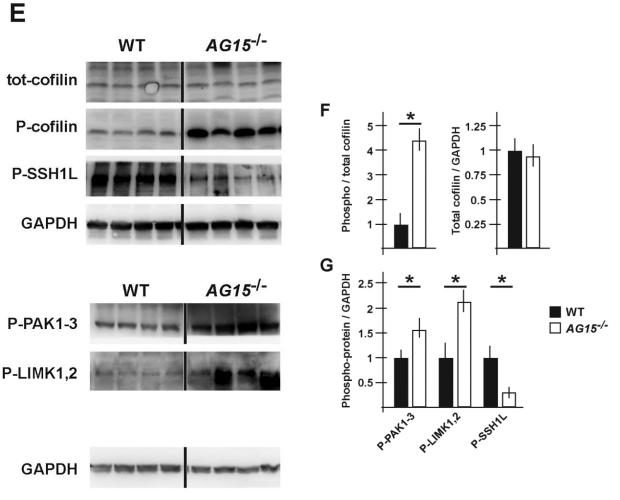
Rho-GTPases GEFs and GAPs

in CNS diseases

Migration


Neuritogenesis

Dendritic spines


Actin dynamics

Conclusions

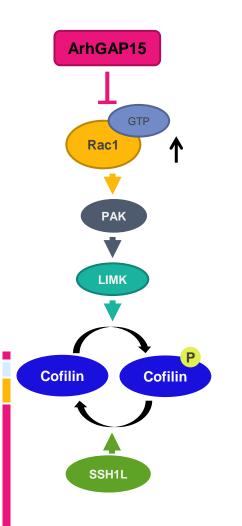
Loss of ArhGAP15 results in increased cofilin phosphorylation via the PAK-LIMK pathway

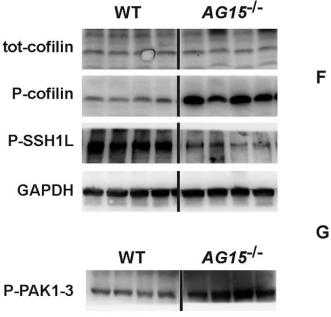
Rho-GTPases GEFs and GAPs

Ε

in CNS diseases

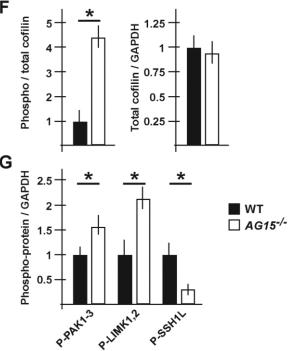
Migration


Neuritogenesis


Dendritic spines

Actin dynamics

Conclusions


Loss of ArhGAP15 results in increased cofilin phosphorylation via the PAK-LIMK pathway

Rho-GTPases GEFs and GAPs

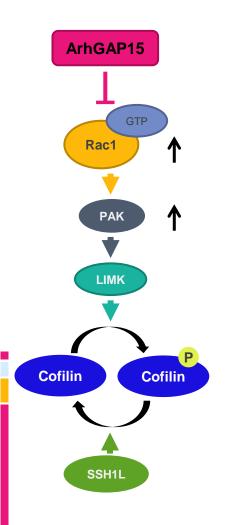
in CNS diseases

Migration

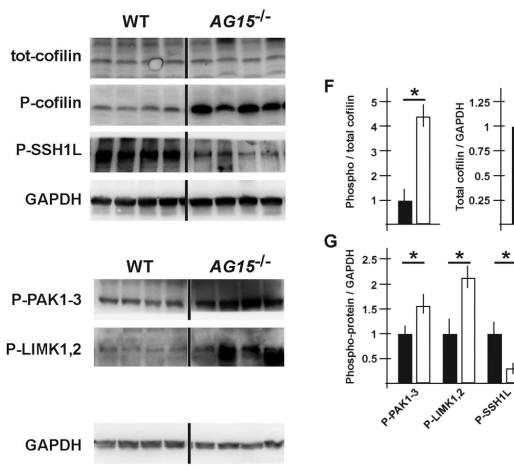
Neuritogenesis

Dendritic spines

Actin dynamics


1.25 1 0.75 0.5 0.25

Conclusions


WT

□ AG15-/-

Loss of ArhGAP15 results in increased cofilin phosphorylation via the PAK-LIMK pathway

Ε

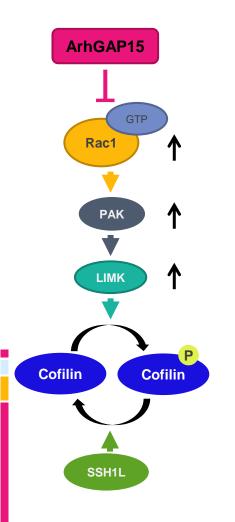
Rho-GTPases GEFs and GAPs

in CNS diseases

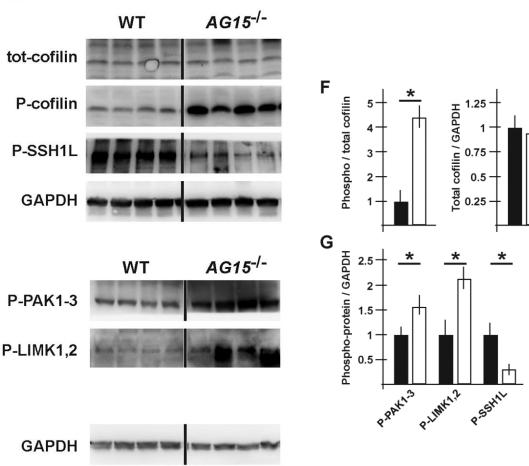
Migration

Neuritogenesis

Dendritic spines


Actin dynamics

Conclusions


WT

□ AG15-/-

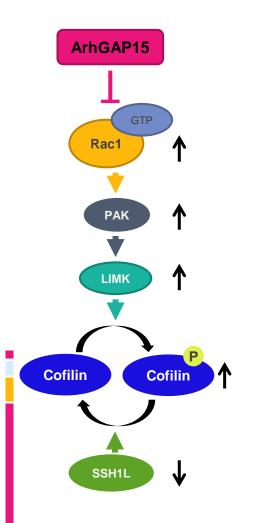
Loss of ArhGAP15 results in increased cofilin phosphorylation via the PAK-LIMK pathway

Ε

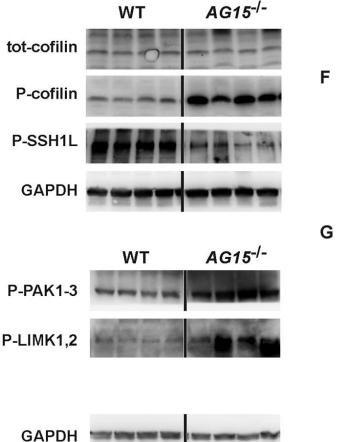
Rho-GTPases GEFs and GAPs

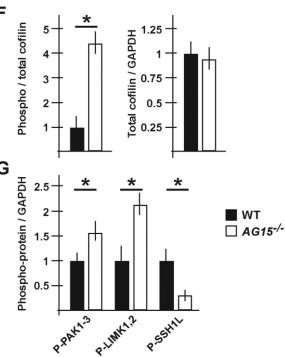
in CNS diseases

Migration


Neuritogenesis

Dendritic spines


Actin dynamics


Conclusions

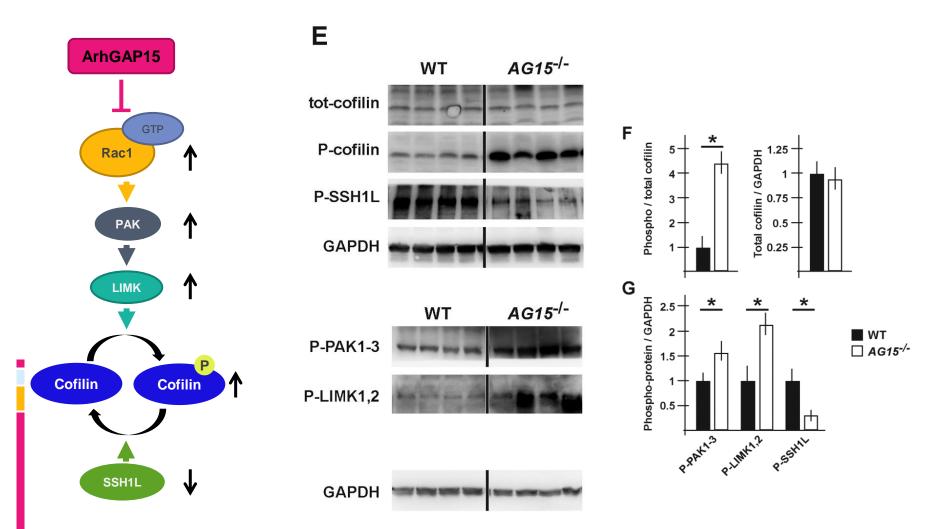
Loss of ArhGAP15 results in increased cofilin phosphorylation via the PAK-LIMK pathway

Ε

Rho-GTPases GEFs and GAPs

in CNS diseases

Migration


Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

Loss of ArhGAP15 results in increased cofilin phosphorylation via the PAK-LIMK pathway

Increased cofilin phosphorylation is consistent with reduced actin dynamics; this could validate the reduced efficiency of neuritogenesis and branching, observed in the absence of ArhGAP15.

Introduction

Rho-GTPases GEFs and GAPs

Migration

Neuritogenesis

Dendritic spines

Actin dynamics

Conclusions

in CNS diseases

How does the growth cone utilize the actin engine to move forward?

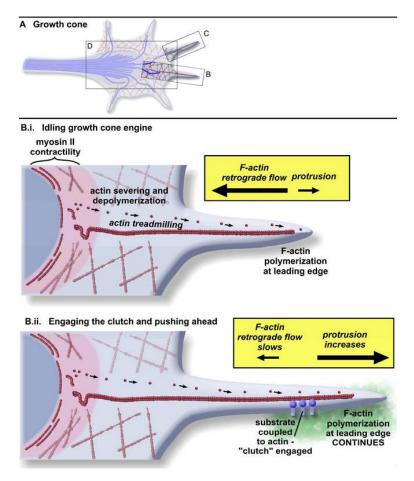
Rho-GTPases GEFs and GAPs

in CNS diseases

Migration

Neuritogenesis

Dendritic spines


Actin dynamics

Conclusions

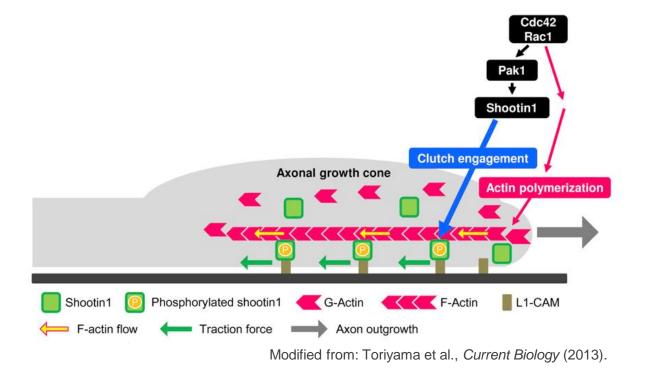
The growth cone `vehicle'

F-actin treadmilling: F-actin polymerization at leading edge, F-actin severing at transition (T)-zone, and recycling of these subunits back to leading edge.

F-actin retrograde flow: F-actin moving backwards towards T-zone, driven both by contractility of the motor protein myosin II, and the `push' from F-actin polymerization in the P-domain.

Lowery and Van Vactor (2009), Nat Rev Mol Cell Biol.

in CNS diseases


Neuritogenesis

Dendritic spines

Actin dynamics (

Conclusions

Linkage between actin filament retrograde flow and cell adhesion molecules

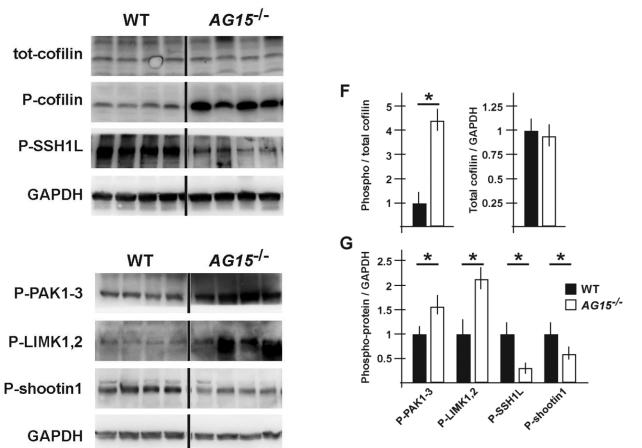
Shootin1 functions as a linker molecule that couples F-actin retrograde flow and the substrate at neuronal growth cones to promote axon outgrowth:

• shootin1 phosphorylation enhances the interaction between shootin1 and F-actin retrograde flow, promoting filopodium extension and axon outgrowth.

APs Migration

Neuritogenesis

Dendritic spines


Actin dynamics Co

Conclusions

Loss of ArhGAP15 results in uncoupling between the actin cytoskeleton and cell adhesion molecules

Ε

in CNS diseases

In our model shootin1 does not act as a linker molecule between retrograde actin flow and adhesion system. Introduction

Rho-GTPases GEFs and GAPs

in CNS diseases

Ps Migration

Neuritogenesis

Dendritic spines

Actin dynamics C

Conclusions

Conclusions

• *ArhGAP15* is expressed in three distinct tangential streams, reminiscent of the tangential migration routes of the immature interneurons.

- In the absence of ArhGAP15:
 - reduced efficiency of neuritogenesis and branching;
 - increased retrograde actin flow;
 - impaired interneuronal tangential migration;
 - pyramidal cortical neurons are hyperexcitable;
 - ArhGAP15KO mice show spontaneous subclinical epileptic spikes.
- •Hyperactivation of Rac1-downstream pathway:
 - increased levels of phospho-PAK1/2/3;
 - increased levels of phospho-LIMK1/2;
 - increased levels of phospho-cofilin;
 - reduced levels of phospho-slingshot.
- Uncoupling between the actin cytoskeleton and cell adhesion molecules:
 - decreased levels of phospho-shootin1.

valentina.zamboni@unito.it