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Abstract  

Inflammasomes are intracellular complexes involved in the innate immunity that convert proIL-1β 

and proIL-18 to mature forms and initiate pyroptosis via cleaving procaspase-1. The most well-

known inflammasome is NLRP3. Several studies have indicated a decisive and important role of 

NLRP3 inflammasome, IL-1β, IL-18, and pyroptosis in atherosclerosis. Modern hypotheses 

introduce atherosclerosis as an inflammatory/lipid-based disease and NLRP3 inflammasome has 

been considered as a link between lipid metabolism and inflammation because crystalline 

cholesterol and oxidized low-density lipoprotein (oxLDL) (two abundant components in 

atherosclerotic plaques) activate NLRP3 inflammasome. In addition, oxidative stress, mitochondrial 

dysfunction, endoplasmic reticulum (ER) stress, and lysosome rupture, which are implicated in 

inflammasome activation, have been discussed as important events in atherosclerosis. In spite of 

these clues, some studies have reported that NLRP3 inflammasome has no significant effect in 

atherogenesis. Our review reveals that some molecules such as JNK-1 and ASK-1 (upstream 

regulators of inflammasome activation) can reduce atherosclerosis through inducing apoptosis in 

macrophages. Notably, NLRP3 inflammasome can also cause apoptosis in macrophages, suggesting 

that NLRP3 inflammasome may mediate JNK-induced apoptosis, and the apoptotic function of 

NLRP3 inflammasome may be a reason for the conflicting results reported. The present review 

shows that the role of NLRP3 in atherogenesis can be significant. Here, the molecular pathways of 

NLRP3 inflammasome activation and the implications of this activation in atherosclerosis are 

explained. This article is protected by copyright. All rights reserved 
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Introduction  

Inflammation is a defense response aiming at eliminating the primary causes of cell damage. 

Although inflammation helps cleaning up infections and other toxic stimuli, inflammatory reactions 

can cause significant damages in such a way that inflammation is regarded as an underlying cause 

of some human diseases, especially diseases with a high rate of morbidly and mortality such as 

atherosclerosis. Atherosclerosis is a fundamental cause of cardiovascular diseases, accounting for 

about 50% of deaths worldwide. Atherosclerosis was conventionally believed to be caused by 

impaired lipid metabolism manifested mainly as increased levels of plasma low-density lipoprotein 

cholesterol (LDL-cholesterol) levels (Anderson et al., 1977; Brown and Goldstein, 1974; Brown 

and Goldstein, 1986; Brown et al., 1980). However, inflammation has also emerged as a causal 

factor in forming atherosclerotic plaques and, according to the newest hypotheses, inflammatory 

processes and lipid metabolism jointly contribute to the formation of atherosclerotic plaques in the 

arterial wall (Hansson and Hermansson, 2011; Libby and Hansson, 2015). Retention of atherogenic 

lipoproteins within the subendothelial space – which is due to the interaction of positively charged 

amino acids in apoB100 protein with negatively charged proteoglycans – plays a key role in 

triggering early steps of atherosclerosis (Gustafsson and Boren, 2004; Tabas et al., 2007).  

(Gustafsson and Boren, 2004).  

Inflammasomes are components of the innate immune system and a considerable number of studies 

have reported an association of inflammasome with the development of several diseases such as 

atherosclerosis (Guo et al., 2015). Inflammasomes are multi-protein complexes in the cytoplasm 

that intensifyinflammation in response to a wide range of danger signals including pathogen-

associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) 

(Bakker et al., 2014; Martinon et al., 2004; O'Connor et al., 2003; Petrilli and Martinon, 2007; Yin 

et al., 2013). NLRP3 inflammasome, the most well-known inflammasome, is essential for 

atherogenesis and its silence causes the stabilization of atherosclerotic plaque (Zheng et al., 2014). 
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Cholesterol crystals and oxidized LDL (oxLDL), which are considerably present in atherosclerotic 

plaques, can activate inflammasomes. Consequently, inflammasomes induce inflammation by 

activating caspase-1 and subsequent maturation of inflammatory cytokines such as interleukin-1 

beta (IL-1β) and interleukin-18 (IL-18), and initiating a type of inflammatory cell death called 

pyroptosis (Guo et al., 2015). However, some types of inflammasomes such as NLRP3 and AIM2 

also activate caspase-8 and participate in apoptosis induction. The intensity of stimuli determines 

whether apoptosis or pyroptosis occurs (Sagulenko et al., 2013). Since inflammasomes serve as a 

link between inflammation and lipid metabolism, studying their role in atherosclerosis appears to be 

important. 

Inflammasome has been shown to be up-regulated in the aortas of patients at a high risk of 

atherosclerosis such as diabetics, smokers, hypercholesterolemic subjects, and hypertensive subjects 

(Zheng et al., 2013). Almost all inflammasome activation mechanisms have been recognized as 

atherogenic mechanisms, even several years before the discovery of inflammasomes. These 

mechanisms are reactive oxygen species (ROS) overproduction, mitochondrial dysfunction 

(Ballinger et al., 2000; Victor et al., 2009), lysosome rupture (Yuan et al., 2000), and endoplasmic 

reticulum (ER) stress (Chistiakov et al., 2014; Outinen et al., 1999). In addition, a wide range of 

inflammasome activators are implicated in atherosclerosis (Table 1). 

In the following parts, we explain inflammasome structure, mechanisms of NLRP3 inflammasome 

activation, and the role of NLRP3 inflammasome in atherosclerosis. 

  

Inflammasome structure 

In 2002, inflammasome was introduced as an activator complex of caspase-1 which causes the 

maturation of proIL-1β. It was already clear that IL-1β is activated by caspase-1, but it was 

unknown how caspase-1 was activated. A landmark study revealed that formation of inflammasome 

complex is the activator of caspase-1 (Martinon et al., 2002). Thus far, two types of inflammasomes 
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have been recognized: Nod-like receptor (NLR) inflammasomes, and Pyrin and HIN domain-

containing protein (PYHIN) inflammasomes. 

 

NLR inflammasomes 

NLRs are a group of intracellular receptors of the immune system and a subset of them including 

NLRP1, NLRP2, NLRP3, NLRC4, NLRP6, NLRP7, NLRP12 act as components of inflammasome 

complexes with the sensory role. NLR proteins, except NLRP1 and NLRC4, are comprised of three 

domains: leucine-rich repeat (LRR), nucleotide-binding domain (NBD), and pyrin domain (PYD). 

NLRC4 consists of LRR, NBD and CARD, and NLRP1 has additional PYD and function-to-find 

domain (FIIND) domains (Finger et al., 2012; Harijith et al., 2014; Latz et al., 2013) (Fig 1, A-E).  

LRR and NBD domains, found in all types of NLRs, act as ligand-recognition domain and self-

oligomerization domain, respectively.  

Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) 

and procaspase-1 are other components of NLR inflammasomes (Stutz et al., 2009) (Figure 1). 

Sometimes, caspase-5 or caspase-8 also participates in forming inflammasome complex (Martinon 

et al., 2002; Sagulenko et al., 2013). 

ASC contains PYD and caspase recruitment domain (CARD) and procaspase-1 contains CARD and 

caspase-1 domains. NLRs (except NLRC4 which has no PYD domain) bind to ASC through PYD-

PYD interactions and, consequently, ASC binds to procaspase-1 (Sagulenko et al., 2013; Stutz et 

al., 2009) (Fig 1. A, E). NLRP1 and NLRC4 bind to procaspase-1 directly because of the interaction 

of positively charged amino acids in apoB100 protein with negatively charged proteoglycans via 

their CARD domains (Fig 1. B, D). However, it has been observed that NLRP1 and NLRC4 

inflammasome complexes containing ASC have a higher capacity to produce IL-1β (Latz et al., 

2013). Nevertheless, since NLRC4 lacks PYD domain, it is not exactly clear how ASC binds to 

NLRC4 and forms inflammasome complex. The attachment of NLRC4 to ASC through CARD 

domains has been observed in the mammalian two-hybrid analysis (Geddes et al., 2001). Therefore, 
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it is possible that another ASC mediates the attachment of procaspase-1 to other complex 

components (Fig 1. C). 

 

PYHIN inflammasomes 

In this type of inflammasome complexes, PYHIN acts as a sensory part and can interact with viral 

or bacterial dsDNA. 

Absent in melanoma 2 (AIM2) and interferon, gamma-inducible protein 16 (IFI16) are two subsets 

of PYHIN family forming inflammasome complexes.  

 AIM2 has pyrin domain and DNA binding HIN domain. IFI16 in addition to these domains, has an 

extra HIN domain. In this type of inflammasomes, AIM2 or IFI16 attach to ASC through pyrin - 

pyrin interaction and ASC binds to the procaspase-(Bawadekar et al., 2015; Hornung et al., 2009; 

Kerur et al., 2011) (Figure 1. F, G). 

  

NLRP3 inflammasome activation 

It has been showed that two signals are required for NLRP3 inflammasome activation: i) the first 

signal is NLRP3 up-regulation through the NF-κB activation (mainly considered a toll-like 

receptor-dependent pathway (TLR)) or BRCC3 activation (Abais et al., 2015). , ii) the second signal 

is NLRP3 activation and ASC phosphorylation, which lead to the formation of NLRP3 

inflammasome complex (Figure 2). In addition,  many mechanisms have been recognized for the 

inflammasome activation such as K
+
 efflux, ROS overproduction, ER stress, mitochondrial 

dysfunction, Ca
2+

 signaling, and lysosome rupture. These mechanisms could provide the second 

signal; however, as seen in the figure, these mechanisms also activate NF-κB (either directly or 

indirectly through ROS production) or participate in NLRP3 deubiquitination. Therefore, it seems 

that these mechanisms could have a role in providing the first signal. These mechanisms are also 

overlapped. TXNIP, NEK7, ox-mtDNA, PKR, and CB (cathepsin B) are downstream molecules of 

the second signal mechanisms. The second signal could activate JNK and SYK, which 
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phosphorylate ASC and cause ASC speck formation. A notable point in the figure is the 

involvement of ROS in the first signal and in the upstream or downstream of all of the second 

signal mechanisms. All of the molecules in this picture except NEK7 have roles in atherosclerosis 

(Table 1) suggesting that the mechanism of the NLRP3 inflammasome activation and 

atherosclerosis share many similarities. In addition, positive feedback cycles are also notable in 

these pathways.  

 

 

 

 1) Signaling pathways affected by NLRP3  

Several studies have indicated that some signaling pathways could be affected by NLRP3. NLRP3 

regulation could occur at different levels: transcriptional, translational, and post-translational levels. 

In the below sections, we summarize a variety of signaling pathways and molecules that could be 

regulated by NLRP3.  

 

1-1) NLRP3 and NF-κB 

Among various types of molecules and signaling pathways that are affected by NLRP3 is nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB is a nuclear transcription 

factor and is activated by various factors such as ROS, TNF-α, IL-1β, and LPS (Chandel et al., 

2000; Luo et al., 2014). NF-κB up-regulation is observed in many inflammatory diseases and, 

seemingly, it is not easy to consider NF-κB activation as a protective or destructive event in 

inflammatory diseases.  

It has been observed that NF-κB causes up-regulation of IL-1β and NLRP3 in a TLR-dependent 

pathway (Abais et al., 2015). One of the important components in TLR signaling pathway is protein 

kinase R (PKR). Lack of PKR in mice impaired the responsiveness to a variety of TLR ligands 

(Garcia et al., 2006). PKR also plays a role in NF-κB activation (Balachandran et al., 1998). 
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Therefore, it is probable that at least a part of the TLR pathway in NF-κB activation is mediated 

through PKR. PKR is also activated by ROS (Li et al., 2010) (Figure 2). ROS can play a role in 

activating NLRP3 inflammasome through NF-κB activation (Luo et al., 2014). ER stress can also 

activate NF-κB (Tam et al., 2012) (Figs. 2 and 3). Several studies have suggested a decisive effect 

of ROS and ER stress as the second signal of inflammasome activation (Abais et al., 2015; Latz et 

al., 2013). More research on the role of ROS and ER stress in providing the first signal (NLRP3 and 

IL-1β up-regulation) is required. Additionally, viral double-strand RNA (dsRNA) can also activate 

NF-κB and NLRP3 via polymerizing mitochondrial antiviral-signaling protein (MAVS) in the 

mitochondrial membrane (van Kempen et al., 2015). Finally, NLRP3 could affect NF-κB and 

underlying signaling pathways which lead to the progression of atherosclerosis.  

 

1-2) NLRP3 and microRNA 

MicroRNAs down-regulate the expression of genes at the translational level (Ambros, 2004; Bartel, 

2004; Bartel, 2009; Fabian et al., 2010; Fathullahzadeh et al., 2016; Mirzaei et al., 2017b; Mirzaei 

et al., 2016a; Mirzaei et al., 2016b; Mirzaei et al., 2016c; Mohammadi et al., 2016; Rashidi et al., 

2016; Reza Mirzaei et al., 2016; Saadatpour et al., 2016; Salarinia et al., 2016; Simonian et al., 

2017). MicroRNAs can degrade mRNA in cooperation with a protein complex called RNA-induced 

silencing complex (RISC) (Gholamin et al., 2017; Ha and Kim, 2014; Mirzaei et al., 2017a; Mirzaei 

et al., 2017b; Moridikia et al., 2017; Rashidi et al., 2017). MicroRNA-223 is one of the microRNAs 

which degrades NLRP3 mRNA leading to a reduced amount of NLRP3. MicroRNA-223 

antagonists increase the amount of NLRP3 (Bauernfeind et al., 2012). MicroRNA-223 has also been 

shown to act as an important regulator of cholesterol (Vickers et al., 2014). Since microRNA-223 

acts as a regulator of inflammasome activity and cholesterol metabolism, it is important to study its 

alterations in inflammatory/lipid-based diseases such as atherosclerosis.  
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Few studies have assessed the effect of NLRP3 inflammasomes on the expression of microRNAs 

and have shown that inflammasomes could affect the expression profile of a variety of microRNAs. 

Hence, it seems that additional studies in this area are required.  

 

1-3) NLRP3 up-regulation at the post-translational level 

Deubiquitination/ubiquitination of proteins is a mechanism which can change the level of proteins 

within a few minutes. Ubiquitination causes protein degradation in the cellular proteasome whereas 

deubiquitination leads to the increased level of protein.  Findings in mice and human macrophages 

suggest the presence of a basal level of ubiquitinated NLRP3. NLRP3 deubiquitination is required 

for increasing the available amount of NLRP3 (Juliana et al., 2012). TLR and ROS signaling can 

also increase the levels of NLRP3 through its deubiquitination. This deubiquitination is also 

potentiated by extracellular ATP (Juliana et al., 2012). It has been observed that BRCA1/BRCA2-

Containing Complex Subunit 3 (BRCC3) is an enzyme which deubiquitinates the LRR domain of 

NLRP3 and this deubiquitination is necessary for NLRP3 activation (Py et al., 2013) (Figure 2). 

 

2) NLRP3 oligomerization and inflammasome complex formation 

NLRP3 is considered as the sensor of inflammasome complex. Various components such as 

Thioredoxin Interacting Protein (TXNIP) (Zhou et al., 2010), NIMA-related kinase 7 (NEK7) (He 

et al., 2016), oxidized mitochondrial DNA (ox-mtDNA) (Shimada et al., 2012), PKR (Lu et al., 

2012), and cathepsin B can bind to NLRP3. These components are provided through different 

mechanisms including K
+
 efflux, ROS generation, calcium signaling, ER stress, mitochondrial 

dysfunction, and lysosome rupture (Figure 2). 

When NLRP3 it activated, it interacts with ASC. ASC, in the form of speck-like cytoplasmic 

aggregation in cooperation with NLRP3, causes procaspase-1 to be cleaved, resulting in caspase-1 

activation (Compan et al., 2015; Neumann and Ruland, 2013).  
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ASC phosphorylation is also required for the formation of speck. Spleen tyrosine kinase (SYK) and 

c-Jun N-terminal kinase (JNK) are two kinases which phosphorylate ASC. Inhibition of SYK or 

JNK interferes with the ASC speck formation but has no effect on binding of ASC to NLRP3 (Hara 

et al., 2013). ASC speck formation is required for inflammasome activation and the necessity of 

ASC phosphorylation for forming ASC speck suggests that the mechanisms proposed for the 

formation of inflammasome complex (K
+
 efflux, ROS formation, Ca

2+
 signaling, ER stress, 

mitochondrial dysfunction, and lysosome rupture) should lead not only to NLRP3 activation but 

also to ASC phosphorylation. These mechanisms are overlapping (Figure 2) and we explain them as 

four mechanisms: 1- K
+
 efflux, 2- ROS formation, 3- ER stress-induced mitochondrial 

dysfunction- Ca
2+

 signaling, and 4- lysosome rupture. 

 

K
+
 efflux 

K
+
 efflux is one of the mechanisms for inflammasome activation. K

+
 efflux is induced by many 

stimuli and is a common, necessary, and even sufficient signal for NLRP3 activation (Munoz-

Planillo et al., 2013). ATP is an inflammasome activator (Mariathasan et al., 2006) and is able to 

induce K
+
 efflux. ATP is a P2X7 agonist and binds to the P2X7 receptor (P2X7R) and activates it 

(Surprenant et al., 1996). Activated P2X7R causes K
+
 efflux by creating some channels in the cell 

membrane (Pelegrin and Surprenant, 2006); the low level of intracellular K
+
 induces NLRP3 

inflammasome activation (Petrilli et al., 2007). P2X7R also phosphorylates and activates PKR 

(Peng et al., 2015) which is involved in the activation of NLRP1, NLRP3, NLRC4 and AIM2 

inflammasomes by physical interaction with them (Lu et al., 2012). 

NEK7, a member of the mammalian NIMA-related kinases family (NEK proteins), is a downstream 

protein of K
+
 efflux signaling. NEK7 binds to the LRR domain of NLRP3, leading to the activation 

and oligomerization of NLRP3 (He et al., 2016). 
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PKR also plays a role in the activation of JNK (Zhang et al., 2009), a kinase required for ASC 

phosphorylation. SYK activation is also observed downstream of the K
+
 efflux (Yaron et al., 2016). 

 

ROS 

ROS is among the most important factors affecting NLRP3 inflammasome activation. There are 

several sources for ROS production such as cyclooxygenase (COX), lipoxygenase (LPO), NADPH 

oxidase, mitochondrial dysfunction, and ER stress. Most of them participate in activating 

inflammasome or producing IL-1β (Figs. 2 and 3, table 1). 

An in vivo study has shown that TXNIP is essential for NLRP3 inflammasome activation (Zhou et 

al., 2010). TXNIP is activated under the influence of ROS and induces ROS production. TXNIP is a 

protein linking the oxidative stress and the inflammasome activation (Harijith et al., 2014; Lane et 

al., 2013; Zhou et al., 2010). ROS production has been reported to be significantly decreased in 

TXNIP-deficient mice (Shah et al., 2013). It has also been shown that TXNIP reduction impairs 

NLRP3 inflammasome activation and reduces IL-1β production (Zhou et al., 2010). 

TXNIP inhibits the redox activity of thioredoxin (TRX). Under the influence of ROS, TXNIP is 

translocated from the nucleus and binds to TRX1 in the cytosol and TRX2 in the mitochondria, 

leading to increased ROS generation (Harijith et al., 2014). TXNIP-TRX separation in a ROS-

dependent pathway has also been reported (World et al., 2011). When TRX is oxidized, TXNIP is 

separated from TRX. Free TXNIP interacts physically with the LRR domain of NLRP3 (Zhou et al., 

2010). It has been observed that inflammasome activators such as uric acid crystal induce the 

separation of TXNIP from TRX in a ROS-sensitive pathway (Zhou et al., 2010). Therefore, two 

groups of studies have mentioned the attachment and separation of TXNIP to/from TRX in a ROS-

dependent pathway. It seems that this contradiction may be explained as follow: 

Under the influence of ROS, TXNIP comes out of the nucleus, and inhibits the activity of TRX 

viabinding to it, results in increased level of ROS. Increased amount of ROS can oxidize TRX1. 
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TRX in the oxidized form is not able to bind to TXNIP and is separated from it. Now, free TXNIP 

can bind to NLRP3 leading to NLRP3 activation (Zhou et al., 2010) . 

In unstressed cells, TRX is bound with apoptosis signal-regulating kinase (ASK) to block the ASC 

function. In stress conditions, oxidized TRX can also detach from ASK leading to ASK activation. 

Then activated ASK can stimulate JNK, a kinase that participates in forming ASC speck 

(Matsuzawa and Ichijo, 2008; Son et al., 2011) (Figure 2). In addition, TXNIP-TRX2 interaction 

increases the level of ROS in mitochondria (Harijith et al., 2014). Mitochondrial ROS activates 

NEK7, which is an inflammasome activator (He et al., 2016). Increased ROS also causes mtDNA to 

be oxidized (Ballinger et al., 2000). Observations suggest that NLRP3 can be activated by the entry 

of ox-mtDNA to the cytosol and binding to NLRP3 (Shimada et al., 2012). Therefore, TXNIP 

activates NLRP3 not only directly through binding to NLRP3, but also indirectly through producing 

ROS that leads to mtDNA oxidation and NEK7 activation (Figure 2).  

PKR is another molecules activated by ROS (Li et al., 2010) and influences the activity of NLRP3. 

The role of PKR as the activator of NF-κB, JNK, and NLRP3 were mentioned earlier. Despite these 

observations, Yim et al. showed that PKR inhibits the activity of inflammasome through its kinase 

activity (Yim et al., 2016). More studies are needed to clarify the effects of PKR on inflammasome 

activity.  

Mechanisms such as K
+
 efflux (Tschopp and Schroder, 2010), ER stress (Malhotra and Kaufman, 

2007), mitochondrial dysfunction, lysosome rupture, and cathepsin B (Freeman et al., 2013) also 

cause ROS production (Figure 2). It has been observed that many factors that are known as 

inflammasome activators are able to produce ROS. For example, a number of studies have reported 

the importance of NADPH oxidase-derived ROS in the activation of NLRP3 in response to ATP, 

asbestos, and silica (Cruz et al., 2007; Dostert et al., 2008; Hewinson et al., 2008). These findings 

indicate the importance of further investigations on ROS as an important mechanism for NLRP3 

inflammasome activation. However, inflammasome activation in a ROS-independent pathway has 
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also been reported. It has been observed that ROS production is not necessary for NLRP3 activation 

(van de Veerdonk et al., 2010). 

Macrophages in which NADPH oxidase enzymes are genetically impaired have been shown to have 

normal level of NLRP3 inflammasome activity (van Bruggen et al., 2010). In addition, increased 

amounts of ROS result in the inhibition of caspase-1 via reversible oxidation and glutathionylation 

of the redox-sensitive cysteine residue Cys397 in SOD1-deficient macrophages (Meissner et al., 

2008). Therefore, it seems that different concentrations of ROS have contrasting effects on 

inflammasome activation and this may explain the conflicting results reported. 

 

ER stress, mitochondrial dysfunction, and Ca
2+

 signaling 

ER controls synthesis, changing, and folding of the secretory proteins. When protein synthesis 

exceeds the ER folding capacity, misfolded and unfolded proteins accumulate in the ER lumen. 

This accumulation leads to a condition known as ER stress. Various physiological and pathological 

factors can result in ER stress by disrupting ER homeostasis. ER stress has a role in the 

pathogenesis of many inflammatory diseases. When ER stress occurs, a compensatory system called 

unfolded protein response (UPR) is activated trying to turn the ER stress condition to the normal 

state. Nevertheless, in extreme or prolonged ER stress, the UPR system will impel the cell to death.  

Inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6 (ATF6) and protein kinase 

R-like endoplasmic reticulum kinase (PERK) are three ER stress transmembrane sensors which 

trigger UPR response in the presence of misfolded and unfolded proteins. In normal conditions, 

Binding immunoglobulin Protein (BiP, an ER chaperone, binds to the luminal domain of these three 

proteins, but during ER stress state, BiP is dissociated from the aforementioned proteins  and 

attaches to the misfolded proteins. BiP separation from sensory proteins will activate these three 

sensor proteins.  

ER stress activates the inflammasome (Mekahli et al., 2011; Ron and Walter, 2007; Schroder and 

Kaufman, 2005), although the exact molecular pathway of it has not been well understood. Studies 
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have suggested that inflammasome activation occurs in a UPR-independent pathway (Menu et al., 

2012); however, UPR sensor molecules such as IRE1α, ATF6 and PERK are involved in NF-κB 

activation and ROS production (Wang and Kaufman, 2014). Since NF-κB and ROS participate in 

the upregulation of NLRP3 and activation of the inflammasome, respectively, it seems that UPR 

may be able to activate inflammasome. This reveals the necessity for further studies on UPR 

response as an inflammasome activator. 

PERK, IRE1α also increase the levels of TXNIP which is an NLRP3 activator. TXNIP reduction is 

observed in PERK knockdown mouse embryonic fibroblasts under the ER stress conditions 

(Oslowski et al., 2012). IRE1α, having kinase and endonuclease (RNAase) activities, degrades the 

microRNA-17 through its RNAase activity. MicroRNA-17 decreases the mRNA level of TXNIP. 

Therefore,  IRE1α increases the level of TXNIP by reducing microRNA17 (Hassler et al., 2012). 

IRE1α also activates JNK, which is involved in the formation of ASC speck (Urano et al., 2000) 

(Fig 3). 

ER also serves as a storage for Ca
2+

 and can regulate the cytosolic Ca
2+

 levels. When ER Ca
2+

 

level decreases, ER Ca
2+

-dependent chaperone are deactivated, resulting in the accumulation of 

misfolded proteins in ER (Oslowski and Urano, 2011). There is an interaction between Ca
2+

 level 

and ER stress, in such a way that IP3R, which regulates the Ca
2+

 to flow out of the ER, serves as 

the fourth sensor of ER stress. At unstressed cell state, an appropriate and necessary amount of 

Ca
2+

 leaves ER through IP3R. In the initial and adaptive phase of ER stress, the efflux of Ca
2+

 is 

reduced by IP3R. However, in the prolonged ER stress which is beyond the adjustable level, IP3R 

pushes the cell toward apoptosis by increasing the outflow of Ca
2+

 from the ER (Mekahli et al., 

2011). Increased level of cytosolic Ca
2+

 enters the mitochondria and causes ROS production. It 

mentioned that mitochondrial ROS causes mtDNA to be oxidized that leads to the inflammasome 

activation. 
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Ca
2+

 also activates JNK, a necessary kinase for ASC speck formation, by activating tat-associated 

kinase (TAK1)-JNK pathway (Okada et al., 2014). Increased extracellular Ca
2+

 can also cause the 

activation of the inflammasome (Rossol et al., 2012) (Figure 3). The increased concentration of 

extracellular Ca
2+

 at the site of infection (Kaslick et al., 1970) and chronic inflammation (Korff et 

al., 2006; Tzimas et al., 2004) is observed. Necrotic cells seem to be a resource for the increased 

extracellular Ca
2+

 (Rossol et al., 2012). The increased extracellular Ca
2+

 activates NLRP3 

inflammasome through G protein-coupled calcium-sensing receptor in a inositol (1,4,5)-

trisphosphate (PI3) / Ca
2+

 pathway. PI3 binds to IP3R leading to the Ca
2+

 to flow out the ER 

through IP3R (Lee et al., 2012; Rossol et al., 2012). G protein-coupled receptor (GPCR) signaling 

pathway also can reduce cyclic AMP (cAMP), which inhibits the activity of NLRP3 by binding to 

it. Hence, GPCR can activate NLRP3 by lowering the level of cAMP (Lee et al., 2012). 

Increased amount of extracellular Ca2+ in the site of infection or inflammation causes Ca2+ to be  

released from ER in a G protein coupled receptor (GPCR) signaling pathway. Ca2+ enters the 

mitochondria and increses ROS. Subsequently, ROS oxidize mtDNA leading to NLRP3 activation.   

Reduced Ca2+of ER also causes ER stress followed by UPR response. IRE1α, ATF6, and PERK are 

three UPR sensor and cause NFkB, JNK, and TXNIP activation which all participate in 

inflammasome activation. G protein (GP), phospholipase C (PLC), 4,5-bisphosphate (PIP2), 

diacylglycerol ( DAG), inositol triphosphate (IP3), protein kinase C (PKC) 

Lysosome rupture:  

Lysosome rupture is another mechanism for NLRP3 inflammasome activation (Figure 2). During 

lysosome rupture, cathepsin B is released from the lysosome (Rajamaki et al., 2010). A recent study 

showed that cathepsin B binds to the LRR domain of NLRP3 and activates NLRP3 (Bruchard et al., 

2013). Cathepsin B is also involved in the activation of mitogen-activated protein kinases 

(MAPKs), one of which is JNK (Figure 2). Inhibition of cathepsin B or cysteine proteases impairs 

the activation of MAPKs (Okada et al., 2014). 
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Cholesterol crystals (Rajamaki et al., 2010) and ROS (Zdolsek et al., 1993) lead to lysosome 

rupture (Figure 2). The effects of cholesterol crystals in activating inflammasomes have led to an 

increasing number of studies on The joint inflammatory/lipid-based nature of atherosclerosis. 

Cluster of differentiation 36 (CD36) can also be considered as a link between lipid metabolism and 

inflammasome activation (Figure 2). CD36, a scavenger receptor on the cell surface, is involved in 

oxLDL internalization and its transformation into cholesterol crystals (Oury, 2014). In addition, 

CD36 interaction with TLR4 /TLR6 heterodimer is involved in NLRP3 and proIL-1β upregulation 

(Sheedy et al., 2013). 

 

Atherosclerosis and inflammasome: 

Atherosclerotic plaques are developed as a result of inflammatory processes and lipid metabolism 

abnormalities; these plaques are, in essence, accumulation of foam cells, immune cells, cholesterol 

crystals, and smooth muscle cells (SMCs) which are proliferated under the influence of 

inflammatory cytokines. Plaque formation is a slow but progressive process, starting in childhood 

and resulting in clinical symptoms in adulthood. There are several risk factors for atherosclerosis 

among which hypercholesterolemia is key one. In comparison to normal forms of cholesterol and 

LDL, crystalline cholesterol and oxLDL participate extensively in forming plaques. OxLDL binds 

with CD36 and is phagocytosed by macrophages. Unlike LDL, oxLDL is resistant to the lysosomal 

enzymes of macrophages, resulting in the oxLDL accumulation in macrophages and subsequent 

formation of foam cells (Hoff et al., 1993; Lougheed et al., 1991). 

The exact mechanism of LDL oxidation is controversial and several oxidative sources such as ROS, 

metal ions, lipoxygenase, and myeloperoxidase have been suggested (Gaut and Heinecke, 2001; 

Parthasarathy et al., 2010; Yoshida and Kisugi, 2010). However, the presence of oxLDL in the 

subendothelial space and its impact on the development of atherosclerotic plaque has been 

suggested by a considerable number of studies. 
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As mentioned earlier, cholesterol crystals and oxLDLs, found in abundance in atherosclerotic 

plaques, cause inflammasome activation. Thus, inflammasome links lipid metabolism and the 

inflammatory condition to each other. Several studies have shown the significant role of NLRP3 

inflammasome in atherosclerosis. NLRP3 is correlated with the severity and prognosis of coronary 

atherosclerosis in patients with acute coronary syndrome (Afrasyab et al., 2015). It has also been 

observed that NLRP3 inflammasome is localized in the cytoplasm of foam cells and macrophages 

(Shi et al., 2015). 

In the carotid atherosclerotic plaques of patients undergoing carotid endarterectomy, there is an up-

regulation of NLRP3, ASC, caspase-1, IL-1β, and IL-18. These molecules are all more expressed in 

unstable plaques compared with stable ones (Shi et al., 2015). 

Inhibition of NLRP3 signaling by lentivirus-mediated RNA interference inhibits pro-inflammatory 

cytokines in apolipoprotein E-deficient (apo E -/-) mice fed with a high-fat diet. This RNA 

interference also reduces macrophages and lipids, and increases SMCs and collagen of the plaque 

leading to plaque stabilization (Zheng et al., 2014).  

Hypercholesterolemia, hypertension, diabetes, and smoking are other risk factors for 

atherosclerosis. Zheng et al. reported an overexpression of NLRP3 in the aorta of smoker patients 

with hypercholesterolemia, hypertension and diabetes. The expression of NLRP3 in the aorta of 

these patients was directly associated with total cholesterol, LDL-cholesterol, lipoprotein(a), and 

inversely associated with HDL-cholesterol levels (Zheng et al., 2013). 

Oxidative stress, mitochondrial dysfunction (Victor et al., 2009), ER stress (Chistiakov et al., 2014), 

and lysosome rupture (Yuan et al., 2000) which are the mechanisms of inflammasome activation, 

are all observed in atherosclerosis. In addition, extracellular Ca
2+

 is another inflammasome 

activator found in atherosclerotic plaques especially in necrotic parts. However, few studies have 

been conducted on these mechanisms in atherosclerosis. 

IL-1β, IL-18, and pyroptosis are inflammasome activation products that have important roles in 

atherogenesis. In recent years, other mechanisms of IL-1β activation independent of the 
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inflammasome and caspase-1 have been found (Mayer-Barber et al., 2010). However, the role of 

inflammasome in IL-1β activation is still impressive. 

IL-1β production in endothelial cells and macrophages has been reported in the atherosclerotic 

coronary arteries (Galea et al., 1996). Around 30% reduction in the size of atherosclerotic plaques 

has been observed in apo E-/- and IL-1β-/- mice compared with the control group of apo E-/- mice 

(Kirii et al., 2003). In addition, monoclonal antibodies against IL-1β inhibit plaque formation in apo 

E-/- mice (Bhaskar et al., 2011). Decreased levels of inflammatory molecules such as VCAM-1, IL-

6, IL-8, MCP-1, TNF-α, MMP-3 and MMP-9 have been reported to accompany reduced levels of 

IL-1β (Bhaskar et al., 2011; Kirii et al., 2003). 

IL-18 is a pro-inflammatory and pro-atherogenic cytokine. Up-regulation of IL-18 and its receptor 

has been reported in macrophages, endothelial cells and SMCs (Gerdes et al., 2002). In addition, 

expression of IL-18 in unstable plaques is more than that in stable ones (Mallat et al., 2001). Studies 

in apo E-/- and IL-18-/- mice showed a reduction of IL-18 in plaque by 35%, compared with IL-18 

competent littermates (Elhage et al., 2003). 

Pyroptosis is an inflammatory cell death process that occurs during activation of caspase-1 by 

oxLDL in macrophages (Lin et al., 2013). It seems that pyroptosis is involved in the development of 

atherosclerotic plaque by intensifying the inflammation (Chang et al., 2013). Despite several 

observations regarding the role of NLRP3 inflammasome in the development of atherosclerosis, 

some reports have indicated no significant effect of NLRP3 inflammasome on the pathogenesis of 

atherosclerosis. It has been observed that atherosclerosis developed in apo E-/- mice is independent 

of NLRP3 inflammasome (Menu et al., 2011). It has also been suggested that NLRP1, not NLRP3, 

has a key role in shifting the endothelial cells to the proinflammatory state (Bleda et al., 2014). In 

addition, JNK-1 and ASK-1, which participate in inflammasome activation, attenuate plaque 

formation via inducing apoptosis in macrophages (Table 1). These are upstream molecules in 

caspase-8 activation which cause apoptosis (Bhattacharyya et al., 2003; Chinen et al., 2010). The 

interesting point is that NLRP3 inflammasome can also cause apoptosis via activating caspase-8 in 
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macrophages.Whether NLRP3 inflammasome mediates the JNK and ASK-induced apoptosis, or if 

at the lower intensity of stimuli the NLRP3 inflammasome apoptotic function protects against 

atherosclerosis development are still unanswered questions (Figure 4). 

 NLRP3 inflammasome causes pyroptosis which is an inflammatory cell death. In addition, NLRP3 

inflammasome-mediated production of IL-1β and IL-18 can intensify inflammation and plaque 

formation through up-regulation of some components. For example, IL-1β increases monocyte 

chemo-attractant protein-1 (MCP-1) and vascular cell adhesion molecule 1 (VCAM-1) which 

participate in leukocyte adhesion to endothelium, IL-8 which is a neutrophil chemotactic factor, and 

matrix metalloproteinases (MMPs) which degrade extracellular matrix such as collagen fibers. IL-

1β also increases IL-8 and TNF-α. Unstable plaques are symptomatic ones with a lower amount of 

SMCs and collagens and more amount of lipids and macrophages, in comparison to stable plaques 

which are asymptomatic. NLRP3 inflammasome is more expressed in unstable plaques, decreases 

SMCs and collagen and increases lipids and macrophages. Therefore, NLRP3 inflammasome 

predisposes plaque to rupture which is followed by thrombus formation. Ultimately, NLRP3 

inflammasome-induced plaque development and thrombus formation narrows the luminal space of 

the vessel and subsequently reduces the blood flow. On the other hand, NLRP3 inflammasome can 

also induce apoptosis in macrophages which may modulate plaque formation. 

 

 

Conclusion  

Inflammasomes are known as intracellular complexes which are able to convert pro-IL-1β and 

proIL-18 to mature forms and initiate pyroptosis through cleaving pro-caspase-1. NLRP3 is a well-

know inflammasome which has central roles in atherosclerosis. It has been shown that NLRP3 

inflammasome contributes to the progression of atherosclerosis via affecting a sequence of cellular 

and molecular targets such as STAT, MAPK, JNK, microRNA network, ROS and PKR. Some 

pathogenic events such as oxidative stress, mitochondrial dysfunction, ER stress, and lysosome 
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rupture which are associated with atherosclerosis, could affect inflammasome activation. A broader 

understanding of biology and activation/inhibition mechanisms of inflammasomes is required to 

define the value of these complexes as potential therapeutic targets in atherosclerosis.  
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Table 1.  Role of some inflammasome activators in atherosclerosis. 

 

Molecule  Effect on 

inflammasome 

activation  

Source of 

experimental 

evidence  

Effect on 

atherosclerosis  

Source of 

experimental 

evidence 

Ref  

TLR  TLR agonists and 

LPS (TLR4 

ligand) upregulate 

NLRP3 

expression 

TLR9 increases the 

expression of 

inflammasome 

components and 

the release of IL-1β 

in human but not 

mouse 

macrophages 

 Murine   

macrophages 

 Human  

macrophages 

 

 TLR4 induces 

plaque formation  

 TLR9 protects 

against 

atherosclerosis  

TLR4 deficiency 

decreases plaque 

even in 

hypercholesterolemic 

state 

 Apo E-/- 

mouse 

 Apo E-/- mice 

 genetic 

deficiency of 

TLR4 or 

MyD88 in 

atherosclerosis-

prone Apo E-/- 

mice 

(Qiao et al., 

2012) 

(Barlan et al., 

2011) 

(Koulis et al., 

2014) 

(Hollestelle 

et al., 2004) 

 

 

MicroRNA 

 MicroRNA-155 

deficiency impairs 

the activation of 

the NLRP3 

inflammasome  

 MicroRNA-7 

influences NLRP3 

 dendritic cells 

 microglial in 

vitro 

 THP1 cells 

derived from 

human lung 

adenocarcino

? - 

(Chen et al., 

2015a) 

(Zhou et al., 

2016) 

(Bandyopadh

yay et al., 

2013) 
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gene and 

significantly 

reduced NLRP3 

protein levels 

 MicroRNA -133a-

1 increases  IL-1β 

release  

ma 

BRCC3 

 Increases the 

release of  IL-1β 

by NLRP3 

deubiquitination 

 

 LPS-primed  

peritoneal  

macrophages   

of murine   

? - 

(Py et al., 

2013) 

ATP 

 Extracellular ATP 

activates NLRP3 

inflammasome 

independent of 

P2X7R. 

 NLRP3 

inflammasome 

activation 

 bovine 

monocytes 

 bone marrow  

macrophages 

of murine 

 Extracellular ATP 

promotes 

atherosclerosis via 

P2Y2  

 in mice 

(Hussen et 

al., 2012) 

(Xiang et al., 

2013) 

(Stachon et 

al., 2016) 

P2X7R 

 P2X7R gene 

silencing prevent 

NLRP3 

inflammasome to 

be activated  

 The P2X7R 

 in rat  

 microglial and 

macrophage 

cells from 

P2X7R -/- 

mice 

 Enhanced 

expression of 

P2X7R in 

atherosclerosis 

 The progression of 

atherosclerosis is 

 aortic sinus of 

cholesterol-fed 

Apo E -/- mice 

 P2X7R 

knockdown 

Apo E -/- mice 

(Feng et al., 

2015) 

(Franceschini 

et al., 2015) 

(Peng et al., 

2015) 
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directly interacts 

with the scaffold 

protein of  

NLRP3 

inflammasome  

reduced by P2X7R 

siRNA 

NEK7 

 Is required for 

NLRP3 

inflammasome 

activation 

 NLRP3-NEK7 

complex 

formation along 

with ASC speck  

 NEK7 -/- or 

NLRP3 -/- 

hematopoietic 

cells of mouse 

in vivo 

? - 

(He et al., 

2016) 

TXNIP 

 participates in 

NLRP3 

inflammasome 

complex 

activation 

 knockdown of 

TXNIP decreases 

the activated 

amount of NLRP3  

 TXNIP mediates 

the activation of 

endothelial 

NLRP3 

 Macrophages 

of TXNIP -/- 

mice  

 endothelial 

cells 

 high-fat diet 

rats 

 TXNIP ablation 

reduces 

atherosclerotic 

lesion by 49%  in 

the rout of aorta 

and 71% in the 

abdominal aorta 

 Apo E -/- mice 

(Zhou et al., 

2010) 

(Liu et al., 

2014) 

(Mohamed et 

al., 2014) 

(Byon et al., 

2015) 
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inflammasome 

and pushes cell 

toward death 

Ca
2+

 

 Is essential for IL-

1β release  

 

 human 

macrophage in 

vitro 

 Ca
2+

 channel 

blockers would 

have 

atheroprotective 

roles 

 Ca
2+

 antagonists 

reduce the rate of 

atherogenesis 

 in SMC in 

vitro and in 

vivo  

 long-term 

clinical trials 

of  Ca
2+

 

antagonists 

(Rada et al., 

2014) 

(Tulenko et 

al., 1997) 

(Hernandez 

et al., 2003) 

NO 

 Suppresses NLRP3 

inflammasome-

mediated IL-1β 

secretion and 

caspase-1 

activation  

 mouse 

macrophages 

 Endothelial NO 

synthesis (eNOS ) 

enzyme protects  

from 

atherosclerosis  

 

 carotid 

arteries of 

Apo E -/- and 

eNOS -/- 

mice 

(Mao et al., 

2013) 

(Ponnuswam

y et al., 2012) 

PKR 

 Normal activated 

level of NLRP3 

inflammasome  

 Deficiency of PKR 

decreases the level 

of IL-1β   

 PKR deficient 

bone marrow 

derived 

macrophages 

 PKR -/- mice 

 PKR  deficiency 

significantly 

protected against 

atherogenesis  

   PKR -/- mice 

(Wu et al., 

2013) 

(Stunden and 

Latz, 2013) 

(Lu et al., 

2012) 

MAPK 

 HMGB1 

promotes the 

 THP-1 

macrophages 

 P38α MAPK -/-  

reduces the 

 p38α MAPK -

/-  macrophage 

(He et al., 

2012) 
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synthesis of 

proIL-1β  and 

proIL-18 in by the 

activation of p38 

MAPK 

amounts of 

collagen and the 

fibrous cap 

 P38α MAPK -/- did 

not affect the 

pathogenesis of 

atherosclerosis  

in vivo 

 P38α MAPK-

/- endothelial 

cell and 

macrophage of 

ApoE-/- mice 

(Seimon et 

al., 2009) 

(Kardakaris 

et al., 2011) 

NADPH 

oxidase 

 Knockdown of the 

common NADPH 

oxidase subunit 

,p22phox, 

diminishes IL-1β 

secretion 

 knockdown -

p22 phox mice 

 NADPH oxidase 4 

prevented the 

endothelial 

dysfunction and 

atherosclerosis 

development 

 50% reduction of 

atherosclerotic 

lesion in NOX2 -/y 

and Apo E -/- mice 

 

 NOX4 -/-  

LDL receptor
 
-

/- mice  

 NOX2 -/y and 

Apo E -/- mice 

(Dostert et 

al., 2008) 

(Langbein et 

al., 2016) 

(Judkins et 

al., 2010) 

COX-2 

 Activates NLRP3 

inflammasome 

leading to the 

increased amount 

of IL-1β and the 

pyroptosis 

 COX-2 -/- 

macrophages  

 promotes the early 

stage of 

atherogenesis 

 Macrophage COX-

2 promoted early 

atherogenesis  

 

 Apo E -/- mice 

 LDL Receptor 

-/- Mice 

(Hua et al., 

2015) 

(Burleigh et 

al., 2005) 

(Burleigh et 

al., 2002) 
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LPO ? - 

 15-lipoxygenase 

enzyme was active 

in human lesions  

 in human in 

vivo 

(Kuhn et al., 

1997) 

Cathepsin 

B 

  Cathepsin 

B inhibitor 

abolishes LCWE-

induced 

inflammasome 

activation in 

coronary arterial 

endothelium 

 In  mice 

 Is upregulated in 

aortic lesions  

 

 Apo E-/-mice 

(Chen et al., 

2015b) 

(Chen et al., 

2002) 

Ox-

mtDNA 

 Participates 

in inflammasome 

activation 

 

 human 

monocytic 

cell line THP-

1 

 

 Promoted 

atherosclerosis  

 Apo E -/- 

mice 

 

(Ding et al., 

2014) 

(Yu et al., 

2013) 

JNK 

 JNK inhibition 

causes reduced 

amount of IL-1β 

and decreased 

activation of 

caspase-1  

 JNK1 and JNK2 

participate in  IL-

1β cleavage  

 Peritoneal 

macrophages 

 JNK1 and 

JNK2 

knockdown 

THP-1 

macrophages 

 JNK1 deficiency 

increased 

atherosclerosis 

through reducing  

macrophage 

apoptosis  

 Loss of JNK2, but 

not JNK1, reduces 

plaque formation 

 LDL receptor  

Null mice 

 Apo E -/- and 

JNK1-/- 

mice. 

 

(Hara et al., 

2013) 

(Okada et al., 

2014) 

(Babaev et 

al., 2016) 

(Ricci et al., 

2004) 
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SYK 

 

 SYK 

inhibition reduces 

IL-1β secretion 

and caspase-1 

activation  

 not required 

for NLRP3 

inflammasome  

 peritoneal 

macrophages 

 dendritic cells 

 SYK inhibition 

reduces plaque 

development   

 Apo E -/- mice 

(Hara et al., 

2013) 

(Lindau et 

al., 2016) 

 

ASK-1 

 Activates 

p38MAPK which 

is an important 

factor for IL-1β 

production. 

 ASK-/- 

macrophages 

 In mice 

 Suppresses 

hyperlipidemia-

induced 

atherosclerosis via 

increased 

macrophage 

apoptosis  

 ASK-/- and 

Apo E-/- mice 

(Hsieh and 

Papaconstant

inou, 2006) 

(Yamada et 

al., 2011) 

ER stress 

 activates the 

inflammasome 

 a UPR-

independent 

pathway activated 

NLRP3 

inflammasome 

 sensors of 

ER stress inducing 

PERK and IRE1α 

 In mice 

 In mice  

 livers from 

obese mice 

 ER stress/UPR 

activation is 

observed in 

development of 

different stages of 

atherosclerotic 

lesion  

 Improvement of ER 

chaperoning 

function inhibits 

 

 Apo E-/- mice 

 In macrophage 

 

(Lebeaupin et 

al., 2015) 

(Menu et al., 

2012) 

(Lebeaupin et 

al., 2015) 

(Dickhout et 

al., 2007) 

(Erbay et al., 

2009) 
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increased the 

activity of the 

NLRP3 

inflammasome 

plaque 

development 

induced by toxic 

lipids 

 

 

TLR: Toll-like receptor,  BRCC3: BRCA1/BRCA2-Containing Complex 

Subunit 3, ATP : adenosine triphosphate,  P2X7R: P2X7 receptor,  NEK7: 

NIMA Related Kinase 7, Txnip: Thioredoxin-interacting protein, Ca
2+

: Calcium 

ions, NO: Nitric oxide, PKR: protein kinase R, MAPK : mitogen-activated 

protein kinase,  NADPH oxidase: nicotinamide adenine dinucleotide phosphate 

oxidase, COX-2: Cyclooxygenase 2, LPO: Lactoperoxidase,  Ox-mtDNA: 

Oxidized mitochondrial DNA, JNK: c-Jun N-terminal kinase, SYK: Spleen 

tyrosine kinase, ASK1: Apoptosis signal-regulating kinase 1, ER: endoplasmic 

reticulum, PERK :  PKR-like ER kinase  and IRE1α: Inositol Requiring 1 alpha  
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Figure 1: The interaction between the components of each inflammasome. A-E NLR, F and G PYHIN 
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Figure 2: Activation of the NLRP3 inflammasome. 
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Figure 3: Role of ER stress, mitochondrial dysfunction, and Ca2+ signaling in NLRP3 inflammasome activation 
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Figure 4: Role of NLRP3 inflammasome in plaque formation. OxLDL ( ), crystalline cholesterol ( ), and Ca2+ ( ) 

are found in abundant in atherosclerotic lesions which cause endothelial cells (EC), smooth muscle cells (SMC), 

and macrophages (M) to activate NLRP3 inflammasome within their cytoplasm 
 
 
 


