INTRA AND EXTRACELLULAR PROTEIN ACCUMULATION

ENODPLASMIC RETICULUM (ER) STRESS

- PROTEIN FOLDING
- ABOUT 30% NEWLY SYNTHESIZED PROTEINS DEGRADED BY PROTASOME DUE TO FOLDING ERRORS
- ER ENDOWED WITH QUALITY CONTROL SYSTEMS

ER STRESS

- hyperstimulation of protein synthesis (plasmacells, β cells)
- viral infections
- ischemia, hypoxia, hypoglycemia, redox stress, altered Ca²⁺ homeostasis
- conformational defects

ACCUMULATION OF ALTERED PROTEIN IN THE ER LEADS TO

•Unfolded Protein Response (UPR; reduced protein synthesis, increased chaperonine levels)

•Endoplasmic reticulum associated protein degradation (ERAD; degradation of misfolded proteins)

Regulation of protein folding in the ER

ER misfolded proteins

recognition

 (multichaperon complex;
 HSP40 and HSP70)
 cytosol export
 ubiquitylation and
 proteasome-dependent
 degradation

Hetz et al., 2013

ERAD: ubiquitin-proteasome pathway

MISFOLDED PROTEIN FATE

- Proteasomal/autophagic degradation \rightarrow restored cell homeostasis
- Undegradable aggregates

cannot enter the proteasome

proteasome 'poisoning'

inhibition of autophagy

Human diseases linked to ER stress - 1

Human diseases linked to ER stress					
Disease	Protein	Function	Major pathology		
Wolcott-Rallison Syndrome	PERK	UPR sensor	Infantile diabetes		
Wolfram Syndrome	WFS1	Involved in ERAD?	Diabetes insipidus, neurodegeneration		
Hereditary tyrosinemia type I	FAH	Tyrosine metabolism	Liver and renal dysfunction; accumulation of a metabolic intermediate causes ER stress		
Familial hypercholesterolemia	* LDLR	Low density lipoprotein receptor	Hypercholesterolemia; accumulation of mutant protein causes ER stress		
Z α1-antitrypsin deficiency	A1AT (α1- antitrypsin)	Protease inhibitor	Early onset liver disease; accumulation of mutant protein causes ER stress		
Inclusion body myopathy (IBMPFD)	p97/VCP/CDC 48	ERAD	Early onset Paget disease and frontal temporal dementia, muscular dystrophy, motor neuron degeneration		
Parkinson's disease	Parkin Others	E3 ubiquitin ligase	Tremor, bradykinesia; loss of inclusion-containing dopaminergic neurons in the substantia nigra; Mutation of Parkin causes ER stress		
Familial Alzheimer's disease	₩ PS1 Others	γ-secretase complex	Memory loss, dementia; loss of neurons from frontal cortex, hippocampus, basal forebrains, formation of extracellular plaques and intracellular neurofibrilary tangles; ER stress?		
Familial Amyotrophic Lateral Sclerosis	¥ SOD1	Cu/Zn superoxide dismutase	Degeneration of motorneurons in spinal cord, cortex and brain stem; caspase 12 is activated and mutant SOD1 forms aggregates in ER in transgenic mice		
Marinesco-Sjögren syndrome	SIL1/BAP/ SLS1	BiP adenine nucleotide exchange factor	Cerebellar ataxia, myopathy, cataracts; ER stress and UPR activation are observed in a mouse model		
GM1 gangliosidosis	β-galactosidase	Carbohydrate/ lipid metabolism	Severe cerebral neurodegeneration; Accumulation of gangliosides; ER stress is observed in a mouse model		

Human diseases linked to ER stress - 2

PLP1	Proteolipid protein 1, myelin component	Spastic quadriplegia, ataxia; dysmyelination; ER accumulation of PLP causes ER stress
PPT1	Palmitoyl- protein thioesterase-1	Seizures, mental deterioration, blindness; accumulation of toxic fatty-acylated proteins in neurons; may involve ER stress and activation of caspase 4
XBP1?	UPR sensor	Manic/depressive psychosis; Xbp1 gene polymorphism?
PrP		Neuronal loss due to accumulation of the misfolded prion protein; enhanced calcium release and ER stress may be involved
SCA3		Ataxia, abnormal ocular movement, spasticity; activation of the IRE1 and PERK branches of UPR
Huntingtin		Neurodegeneration, motor dysfunction, abnormal cognition; mutant huntingtin changes ER calcium homeostasis
APP		Muscle degeneration with vacuolated muscle fibers; inclusions containing either β -amyloid or phosphorylated tau induces ER stress
		Paresis, memory disturbance; neuron death; ER stress and CHOP activation
		Cholesterol deposition on the artery wall; hyperhomocysteinaemia and accumulation of unesterified cholesterol cause UPR induction
		UPR activation can protect tumor cells from hypoxia-induced
		UPR activation upon viral infection Utilizes a specific UPR sensor, CREB-H Fluoride causes ER stress in ameloblast, resulting in dental enamel formation
	PLP1 PPT1 XBP1? PrP SCA3 Huntingtin APP	PLP1Proteolipid protein 1, myelin component Palmitoyl- protein thioesterase-1XBP1?UPR sensorPrPSCA3Huntingtin

AMYLOIDOSIS

EXTRACELLULAR AMORPHOUS DEPOSITION OF INSOLUBLE FIBRILS (amyloid substance; Rudolf Virchow, 1854)

RESULT: ALTERED CELL FUNCTION

DUE TO ABNORMAL PROTEIN FOLDING WITH SPECIFIC CHARACTERISTICS:

eosinophilic/Congo red positive β-pleated sheet structure
non-branching fibrils (7.5-10 nm)

•undegradable

Amyloid composition

- Specific amyloid protein ~ 90%
- P component of SAP ~ 15%
- Glycosaminoglycans

Amyloidosis liver

A, A section stained with **Congo red** reveals pink-red deposits of amyloid in the walls of blood vessels and along sinusoids.

B, Note the birefringence of the deposits when observed by polarizing microscope (Robbins, 2010)

Structure of amyloid. A, An amyloid fiber schematically showing four fibrils (there can be as many as six in each fiber) wound around one another with regularly spaced binding of the Congo red dye. **B**, Congo red staining shows apple-green birefringence under polarized light, a diagnostic feature of amyloid. **C**, Electron micrograph of 7.5- to 10-nm amyloid fibrils (Robbins, 2010)

AMYLOIDOSIS: HEART

AMYLOIDOSIS: MODERN CLASSIFICATION

OFFICIAL ABBREVIATION	AMYLOID TYPE/GENE	DESCRIPTION
AL	Amyloid light chain (λ)	AL amyloidosis/ Multiple myeloma
AA	Serum amyloid A protein	AA amyloidosis
Αβ	β amyloid	Alzheimer's disease
Αβ2Μ	β2 amyloid microglobulin	Hemodialysis related amyloid
ALect2	LECT2 protein	LECT2 amyloidosis
ATTR	Transthyretin	Familial amyloid polyneuropathies, Wild type transthyretin amyloidosis, leptomeningeal amyloidosis
AIAPP	amylin	Type II diabetes
APrP	prion protein	CJD, BSE
ACys	CST3	Cerebral Amyloid Angiopathy
AGel	GSN	Finnish type amyloidosis
AApoA11/ Afib2/ Alys3	APOA11/ FGA2/LYZ3	Familial visceral amyloidosis
APro	prolactin	Prolactinoma
AKer	keratoepithilin	Familial corneal amyloidosis
AANF	Atrial natriuretic factor	Senile amyloid of the heart
ACal	Calcitonin	Medullary carcinoma of the thyroid

B. P Component:

- makes up about 10% of the amyloid's weight
- found on all amyloid fibrils, except those associated with Alzheimer's senile plaques.
- stabilizes fibril amyloid protein and decreases their clearance
- plays a role in some of the other special stains that can demonstrate amyloid (TFT)

Serum amyloid P component scintigraphy

(A) Serial anterior whole-body scintigraphs in a patient with AL amyloidosis (multiple myeloma) treated with oral melphalan and corticosteroids:

- **left:** baseline scan showed extensive amyloid deposits in the liver and spleen obscuring the signal from the kidneys; follow-up scintigraphy 6 months later (**right**) showed complete regression of amyloid from the liver and marked regression from the spleen with a reciprocal increase in the blood-pool signal.

(B) Serial posterior whole-body ¹²³I-labeled serum amyloid P component scintigraphy in a 19-year-old man with sustained remission from juvenile rheumatoid arthritis.

Median serum amyloid A values were <10 mg/l during this 2-year interval.

Left: baseline scan showed extensive amyloid deposits in liver, spleen, and kidneys that had regressed very prominently in the liver at follow-up (right).

The patient had not voided before the baseline scan, which shows radioactive degradation products in the urinary bladder.

Multiple myeloma

Rheumatoid arthritis

