| AGING |

Progressive loss of function
Reduced survival capacity, increased morbidity and death probability
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Late aging: populations characterized by long life span (Caucasus and Andes)

A. genetic program
B. errors and/or toxic metabolite accumulation
(cf. accelerated metabolism and short life span in little animals)




Variation of maximal lifespan across species
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Range of maximal lifespans at the extremes (mayfly and giant tortoise), in some of
man's favourite pets (dog and cat) and experimental animals (Caenorhabditis elegans,
Drosophila, zebrafish and mouse), and in man himself.




An aging world

Fertility rates projected to go down and life expectancy on
the rise, ageing populations will become a future challenge

Population by age group and sex Millions
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Fig. 1. The figure is constructed according to data published by the Ministry of health, Labor, and Welfare
(http://Mmmww.mhlw.go.jp/stf/houdou/0000097089.html).

Yasumichi Arai, Takashi Sasaki, Nobuyoshi Hirose
Demographic, phenotypic, and genetic characteristics of centenarians in Okinawa and Honshu, Japan: Part 2 Honshu,
Japan

Mechanisms of Ageing and Development, 2017, Available online 16 February 2017

http://dx.doi.org/10.1016/j.mad.2017.02.005



The Onsetof Global Aging
Percent of Population Over65
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PERCENTAGE OF PERFORMANCE

Vital function
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Neurological
deterioration

Decreased
cellular/organ
function

Oxidative stress by
Free radicals

Decreased
Hormones

Immunological
Deterioration

Gene mutation
Telomere shortening




Aging and senescence (not synonyms)
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result of functional deficit
Cell types

germ

somatic

stem

No aging in cancer cells

Aging of extracellular components
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FIGURE 1—38B The role of telomeres and telomerase

imn replicative senescence of cells. A, Telomerase directs
RNA template-dependent DNA synthesis, in which
Nnucleotides are added to one strand at the end of a
chromosome. T he lagging strand is filled in by DINA
prolymerase. B, Telomere-telomerase hypothesis and
proliferative capacity of cells. Telomere length is plotted
against the numMmber of cell divisions. Germ cells and stem
cells both contain active telomerase. but only the germ
cells have sufficient levels of the en=zvime to stabili=e
telomere length completely. In normal somatic cells there
is NnNo telomerase activity, and telomeres progressively
shorten withh successive cell divisions until grovwith arrest,
or sSenNnescence, occurs. lelomerase activation in cancer
cells counteracts the telomere shortening that limits the
proliferative capacity of normal somatic cells.

(Modified and redravwn withh permission from Holt SE, et
al: Refining the telomere-telomerase hypothesis of aging
and cancer. Nat Biotechnol 1a4:8368., 1996. Copyright
19SS, Macmillan Maga=ines Limited.)
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CHARACTERISTICS

non fatal processes | sex hormone production
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Fig. 1. SIRT1 produces different outputs as a result of different stimuli. Activation of SIRT 1 to the brain
causes an increase in the expression of the transcription factor FOXO 3A with antiaging properties.
Besides an increase in NF transcription factor may explain, among others, the neuroprotective properties
of SIRT1. SIRT1 protects pancreatic cells and muscle cells against stress-induced apoptosis by
increasing activity of the forkhead protein FOXOL. In the liver, SIRT1 deacetylases the coactivator PGC-
1a, thereby increasing the expression of genes for gluconeogenesis. In the muscles, the effect of SIRT1
on FOXOL1 increases mitochondrial biogenesis and insulin secretion (Camins et al., 2010).
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Figure 2. Hypothetical mode of action of resveratrol and spermidine as autophagy inducers. While
resveratrol functions as an activator of the deacetylase Sirtuin 1, spermidine inhibits one or several
histone acetylases. Therefore, both resveratrol and spermidine are expected to favor protein
hypoacetylation. However, the autophagy-relevant substrates whose deacetylation is induced by
resveratrol and spermidine are not fully characterized and it is even not known if they are completely
distinct, partially overlapping or identical (Morselli et al., 2009).




| INFLAMMAGING |
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Immunosenescence and chronic low-grade systemic inflammation (InlammAging)
Stress, physical and functional impairments, increased morbidity and mortality

Life long exposure to different pathogens
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Blunting effects on hormonal
stress system (HPA axis), on

| @ sympathetic nervous system

and on immune system
Increase in expression of

neurotrophins
Reduction of peripheral CRP levels and Decrescers
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produce strong anti-inflammatory effects
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| PATHOLOGICAL AGING

Early aging syndromes

- Progeria (Hutchinson-Guilford) early death due to cardiac and
cerebrovascular diseases

- Werner syndrome early telomer shortening, altered Homologous
Recombination Repair (HRR)

- Down syndrome trisomia cr. 21 (neurodegenerative lesions and other deficits)
- Alzheimer disease (neurodegenerative lesions)

20 z
. Werner syndrome (adult progeria)
..og 15 ’ Newbomn AT e I
E . k.. Sio X%y :x‘
& W L R é
erner oo SR
210 syndrome e el Ed
g ) - "A i ‘ .
:ll v .1t 3
w e '
O 5 AN i
N O g
0O 10 20 30 40 50 60 70 89 PO %}
POPULATION DOUBLING LEVEL |
FIGURE 1-37 Finite population doublings of primary human Taking its toll. As a teenager (|e&) this
ibroblasts derived from a newborn, a 100-year-old person, iz
and a 20-year-old patient with Werner syndrome. The ability Japanese Armerican looked normal, but
of cells to grow to a confluent monolayer decreases with by age 48, the effects of Werner's syndrome
lincreasing population-doubling levels. were readily apparent. [Image credit: William
(From Dice JF: Cellular and molecular mechanisms of and Wilkens Publishing Inc. ]
aging. Physiol Rev 73:150, 1993.)




Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome & mouse models  Review

Transcriptional perturbations and direct biochemical changes
due fo increased copy number of Hea21 genes
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Figure 1. Chromosomal aneuploidies and disease pathogenesis: role of trans-acting epigenetic effects. Diagram
of chromosome 21 (Hsa21), which is trisomic in Down syndrome. Effector genes on the triplicated Hsa21 act

on downstream target genes, mostly on other chromosomes, both by acute transcriptional effects and via
epigenetic effects, induding alterations in DNA methylation that can propagate to daughter cells in growing and
self-remewing tissues, to produce biological phenotypes.

D5-DM: Differential CpG methylation.

Do et al., 2017
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Fig. 1. Increased lipid peroxidation product HNE leads to neurotoxic effects in Down syndrome brain. Trisomy of chromosome 21 in Down syndrome (DS)
brain is associated with the overexpression of a number of proteins among which are amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1).
Overexpression of APP and SODL1 is considered to be associated with an increased production of amyloid beta-peptide (AB) and superoxide anion (O,™),
respectively. Furthermore, increased AR levels are able to promote mitochondrial damage and thus to sustain a further elevation of O,™ levels. These events
are associated with an increase of both reactive oxygen species (ROS) and reactive nitrogen species (RNS), known to promote proteins and lipids
peroxidation. Among the LPO products, 4-hydroxy-2-nonenal (HNE) is known to bind proteins, thus modifying protein structure and promoting proteins
impairment. Proteins found to be HNE-modified in DS brain are associated with reduced: (I) autophagy; (II) unfolded protein response (UPS); (lll) glucose
metabolism; (IV) antioxidant defense and (V) neuronal trafficking. All these events contribute to sustain a further increase of ROS/RNS, thus amplifying a
vicious cycle. In addition, HNE modifications would promote proteins aggregation, which, because the observed defects in autophagy and UPS, are less
cleared from neurons. Increased protein aggregation like in the case of AB and SOD1, also represent an additional stimulus sustaining ROS/RNS production.

Barone et al, 2016
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Fig. 1. Multifunctional role of DYRK1A. The central role of DYRKZ1A in controlling various physiological processes is outlined using
the cartoon above.

L.J. Kay, T.K. Smulders-Srinivasan, M. Soundararajan
Chapter Six — Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A
Advances in Protein Chemistry and Structural Biology, Volume 105, 2016, 127-171

http://dx.doi.org/10.1016/bs.apcsb.2016.07.001
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Fig. 2. The DYRK family and DYRKZ1A structure. (A) Domain architecture of DYRK kinases. DH domain
characteristic to DYRK family is given using red (gray in the print version) rectangles. The PEST region is
shown using red (gray in the print version) hexagons. Red (gray in the print version) oval, cylinder,
and pentagons show histidine-rich region, serine/threonine-rich region, and nuclear localization sequences,
respectively. (B) Overall structure of DYRK1A catalytic domain with N-terminal lobe shown in orange (gray in
the print version). The C-terminal lobe is given in green (dark gray in the print version) while the DYRK-specific
insert region is given in purple (gray in the print version). (C) A representative figure showing DYRK1A bound
to ATP-mimetic small molecule inhibitor in the ATP-binding site in the hinge region of DYRK1A between N and

C lobes. The P loop closing over the inhibitor is also shown in the figure along with activation segment aC
helix.

L.J. Kay, T.K. Smulders-Srinivasan, M. Soundararajan
Advances in Protein Chemistry and Structural Biology, Volume 105, 2016, 127-171
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Fig. 4. Role of DYRK1A in tau hyperphosphorylation and neuronal diseases. In tauopathies, there is a
reduction in the ability to bind microtubules and promote microtubule assembly. Hyperphosphorylated Tau by
DYRK1A and DYRK1A-primed GSK@ contribute toward destabilized microtubule network, impaired axonal
transport, results in neurofibrillary tangle (NFT) formation and eventually neuronal death. Tau spheres are
given as yellow (white in the print version) sticks and the phosphorylation is shown using small purple (dark
gray in the print version). Microtubule is shown using cyan (white in the print version) and blue (dark gray in
the print version) spheres.

L.J. Kay, T.K.Smulders-Srinivasan, M. Soundararajan

Advances in Protein Chemistry and Structural Biology, Volume 105, 2016, 127-171



