
Summary For Clustering 

•  Many different methods exist for finding 
groups and patterns in data (including some 
I haven’t mentioned).	



•  Many different parameters can be used in 
those methods.	



•  Caution should be exercised in interpreting 
the results.	





Comparing Different 
Clustering Methods 

•  Hierarchical clustering? 	

	


– Single, Average, Complete, Centroid linkage, 

etc.?	


•  Self Organizing Maps	


•  K-means clustering	


•  Other algorithms?	



Which technique is right? 



What is a ‘cluster’? 

– And how do we know if it’s any good, or if one 
technique for producing clusters is better than 
another?	



•  Rather than think simply of clustering, think 
of all these methods as capable of producing 
groups of genes:	
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One cluster to two groups of genes	
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One cluster to three groups of genes	





Now what? 

•  Try many methods, and demand they each 
produce the same number of groups of 
genes.	



•  Is there a metric that says which did best for 
a given number of groups?	



•  Can we come up with a metric for the best 
number of groups?	





What do we think that co-
expression means? 

•  Our general assumption is guilt by 
association:	


	

i.e. genes with similar expression patterns 
are more likely to participate in the same 
biological process.	



•  Therefore, we can exploit the Gene 
Ontology to assess our clusters:	





How do we measure how 
‘good’ the annotation is?  

•  Use a score that measures how coherent the 
level of annotation is compared to what 
would be expected from random clusters.	


–  see Gibbons and Roth (2002).  Genome 

Research 12, 1574-1581.	


– Developed system, such that the higher the 

score, the better the annotation fit the 
clustering.	





Ratio-metric Intensity 

Figure 2.  Four data sets clustered using k-means, hierarchical, and self-
organized map algorithms. The horizontal axis shows the number of 
clusters desired, and the vertical axis shows z-scores. Data sets are (a) 
Cho, (b) CJRR, (c) Gasch, and (d) Spellman. 

Gibbons F. D., Roth F. P. Genome Res. 2002;12:1574-1581 



Characterization of clusters 

•  Now we have groups of genes that best fit 
their annotation, find the best annotation(s) 
that fits those groups.	



•  Calculate P-values for each GO term’s 
association to a cluster, and choose those 
that are most significant.	





Using the Gene Ontology to 
assess clusters 

•  Many microarray analyses result in a list 
of interesting genes	



•  Typically biologists can make up a story 
about any random list	



•  So, look at all GO annotations for the 
genes in a list, and see if the number of 
annotations for any GO node is significant	





•  Biological Process = goal or objective 	

 	

(Why)	



(e.g. DNA replication, Cell Cycle Control, Cell adhesion)	



•  Molecular Function = elemental activity/task	

 	

(What)	



(e.g. Transcription factor, polymerase, protein kinase)	



•  Cellular Component = location or complex 	

 	

(Where)	



(e.g. pre-replication complex, kinetochore, membrane)	



Each Category is a structured, controlled vocabulary	





A child is a subset of	


a parent’s elements	



Nucleus	



Nucleoplasm	

 Nuclear	


envelope	

 Chromosome	

 Perinuclear 

space	


Nucleolus	



The cell component term 	


Nucleus has 5 children 	





Determining P-values for GO 
annotation for a list of genes 

We can calculate the probability of having x of n genes 
having an annotation to a GO node, given that in the 
genome, M of N genes have that annotation, using the 
hypergeometric distribution, as: 	
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Determining GO significance 

To calculate a P-value, we calculate the probability 
of having at least x of n annotations:	



P-value =	
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Then do multiple hypothesis correction on the p-values	
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Methionine Cluster 



GO Annotations 
•  sulfur metabolic process   : 2.43e-19 (12/18 vs 66/6608) 

•  methionine metabolic process  : 1.40e-14 (10/18 vs 24/6608) 
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