Advanced Cell Biology & Biotechnology

Biotechnology Project Lab

Giovanna Gambarotta & Isabella Tarulli

The lecture of December 13th 2021 is about to begin....

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proliferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

- identification of specific exons belonging to different NRG1 isoforms
- identification of exons and introns using BLAST and Ensemble
- use of Annhyb to design primers and to organize and edit sequences
- design primers for isoform specific expression analysis and for full length cDNA cloning
- design primers for quantitative gene expression analysis
- design primers for full length cDNA cloning (with additional restriction enzyme sites to facilitate subcloning)
- plan a reverse transcriptase (RT) reaction with positive and negative controls
- plan a polymerase chain reaction (PCR) with positive and negative controls
- use of Chromas to read an electropherogram
- plan cloning and subcloning from a vector to another vector
- restriction enzyme analysis and preparation of plasmid maps (with neb-cutter or other apps)
- blunting sticky ends
- project hybrid proteins fused with GFP
- project proteins with a FLAG tag
- solve some typical problems you can encounter in the laboratory like:
- analyze relative/absolute quantitative real time PCR data
- analyze protein quantification data
- calculate the amount of cells you have to plate for a specific experiment
- calculate the amount of ingredients in a reaction or to prepare a solution

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

design primers on different exons separated by a big intron (≥1000 bp)

https://www.ensembl.org/index.html

Splice variants @

							XL.
Sho	w All v entries		S	how/hide	columns		Filter
No.	Exon / Intron	Start	End	Start Phase	End Phase	Length	Sequence
	5' upstream sequence						$\dots\dots\dots t {\tt cgccgcgccccgagcgcccccttgcccgccccttgcccgccc$
1	ENSRNOE00000344821	96,810,907	96,811,242	-	2	336	CTCAGCGCCTCAGTGCACAGAGGCTCCTCGTCTGAGGGGACGCGAGGACTGTCCTCGCTA CCGTCGCGAGCAGTGTCTGGCCAGGCCTTGACAAGCCAGCC
	Intron 1-2	96,811,243	96,834,526			23,284	gtaagccgggccgccgcgttctgtgccctcccccccccc
2	ENSRNOE00000291372	96,834,527	96,834,717	2	1	191	GATGAGTTCCGAACGTCGAAAAGAAAAGTCTAGGGATGCAGCACCGATCTCGGCGAAGCAA AGAGTCTGAAGTTTTTTATGAGCTTGCTCATCAGTTGCCACTTCCCCACAACGTGAGCTC CCATCTTGATAAAGCTTCTGTTATGAGGCTCACCATCAGTTACTTAC
	Intron 2-3	96,834,718	96,835,963			1,246	gtgagttctgctaaagcgtaagagatttcttcccacatgtgcccttacag
3	ENSRNOE00000079173	96,835,964	96,836,109	1	0	146	$\label{eq:gtgatcttgaagatgaaatgaaagcacagatgaactgcttttatctgaaagccc} \underline{\mathbf{T}} \\ \mathbf{g} \\ \mathbf$
	Intron 3-4	96,836,110	96,836,191			82	gtaaagtcaccacatatgaagagcatctaatttttttaatgtgtttgcag
4	ENSRNOE00000078038	96,836,192	96,836,276	0	1	85	tttgaactaactggacacagtgtgtttgattttacccatccat
	Intron 4-5	96,836,277	96,838,916			2,640	qtqaqaaaaqtctattqtttqatttaaactttqtttcttqctttcattaq

https://www.ensembl.org/index.html

https://en.vectorbuilder.com/

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

Welcome test 18-10-2021 (64 students)

Goodbye test 13-12-2021 (41 students)

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

Exercise – Transwell assay

Migration Assay

The Transwell migration assay was used to measure three-dimensional movement. Cells (10⁵) resuspended in 200 µl of DMEM containing 2% FBS were seeded in the upper chamber of a Transwell (cell culture insert, no. 353097, BD Biosciences) on a porous transparent polyethylene terephthalate membrane (8.0- μ m pore size, 1 X 10⁵ pores/cm²). The lower chamber (a 24well plate well) was filled with 800 µl DMEM containing 2% FBS with or without 5 nM recombinant NRG1β1. The 24-well plates containing cell culture inserts were incubated at 33 °C in a 5% CO₂ atmosphere saturated with H₂O. After 18 h of incubation, cells attached to the upper side of the membrane were mechanically removed using a cotton-tipped applicator. Cells that migrated to the lower side of the membrane were rinsed with PBS, fixed with 2% glutaraldehyde in PBS for 15 min at room temperature, washed five times with water, stained with 0.1% crystal violet and 20% methanol for 20 min at room temperature, washed five times with water, air-dried, and photographed using an Olympus IX50 inverted microscope equipped with a Cool SNAP-Pro CCD camera; images were edited with Image Pro-Plus software.

TRANSWELL ASSAY

http://www.youtube.com/watch?v=6SON7VAA5-k

Exercise – Transwell assay

- grow cells until confluence in a 10cm diameter dish
- aspirate medium
- wash with 5 ml PBS
- aspirate PBS
- add 1,5 ml trypsin, incubate 2 min at 37°C
- add 6,5 ml medium containing 10% FBS (foetal bovine serum)
- resuspend well the cells pipetting up and down
- take a drop to count the cell number with the Bürker chamber
- spin cells in the centrifuge 5 min, 800 rpm, room temperature
- discard supernatant
- resuspend the pellet in XX ml of 2% FBS DMEM in order to have a suitable concentration;
- -> Indeed, you want to pipet 200 μl containing 10⁵ cells in different transwells
- Add 200 μ l containing 10⁵ cells to different transwell and put them in a multiwell containing 800 μ l 2% FBS DEMEM with or without ligands.

Exercise – Transwell assay

Question:

If you count **35 51 45 31 46** cells in five squares of the Bürker chamber (0,1mm³ each)

- How many cells do you have?
- in which volume of 2% FBS DMEM do you have to resuspend the cells to have 100000 cells in 200 μ l?ml (use 2 decimal numbers)

To be more precise, you count again your cells to be sure that you really put 10⁵ cells/transwell.

You count again and you find: **46 44 42 50 34**How many microliters of cells do you have to put in the transwell to have **10**⁵ cells? (no decimal numbers)

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

• For a 10ml separating gel:

Acylamide percentage	6%	8%	10%	12%	15%
H ₂ O	5.2ml	4.6ml	3.8ml	3.2ml	2.2ml
Acrylamide/Bis-acrylamide (30%/0.8% w/v)	2ml	2.6ml	3.4ml	4ml	5ml
> 1.5M Tris(pH=8.8)	2.6ml	2.6ml	2.6ml	2.6ml	2.6ml
→ 10% (w/v)SDS	0.1ml	0.1ml	0.1ml	0.1ml	0.1ml
10% (w/v) ammonium persulfate (AP)	100µl	100µl	100µl	100µl	100µl
TEMED	10µl	10µl	10µl	10µl	10µl

Exercise – Reagents for western blot

TRIS Base

Molecular Weight 121,14

1,5 M Tris pH 8.8 - How many grams for 250 ml?

0,5 M Tris pH 6,8 - How many grams for 250 ml?

Sodium dodecyl sulfate (SDS)

Molecular Weight 288.38

10% SDS - How many grams for 250 ml?

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proliferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

Exercise - Proliferation assay

- take a 10 cm diameter plate containing confluent cells
- aspirate medium
- wash with 5 ml PBS
- aspirate PBS
- add 1,5 ml trypsin, incubate 2 min at 37°C
- add 6,5 ml medium containing 10% FBS (foetal bovine serum) to inactivate trypsin
- resuspend well the cells pipetting up and down
- take a drop to count the cell number with the Bürker chamber
- you count for example: 15 27 32 26 20
- how many cells do you have in 1 ml?
- how many μl do you have to use if you want to plate 10⁵ cells?

- if you want to do a proliferation assay in a 96 well plate, you have to use 10³ cells/well
- how many μl of cells do you need if you want to plate 1000 cells in a well?
- if you prepare 4 plates 96 wells for a time course assay (control=time 0, 1 day, 3 days, 5 days) you can prepare a solution containing all the cells and all the medium necessary for the entire experiment.
- If you add 100μl/ well and 1000 cells/well, how do you prepare your cell mix solution?
- how many cells? Number and μl?
- how much medium? ml?
- in the lab usually we prepare a solution more abundant in order to be sure to have enough material, but now we plan to prepare the precise volume

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proliferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

			CT p75	CT HKG
	CTRL NERVE	53,86	25,97	26,61
		53,87	25,919	26,712
		53,88	26,323	27,007
		53,89	27,136	27,1
	AUTOGRAFT	72,46	23,974	27,998
		72,70	23,727	27,806
		72,76	24,149	28,115
	CHITOSAN TUBE	72,56	24,904	27,692
		72,66	23,83	27,664
		72,68	24,992	28,091
		72,74	25,193	29,04
	MUSCLE IN TUBE	72,44	24,828	28,164
		72,48	23,572	28,584
		72,50	25,146	28,29
		72,60	23,837	26,873
		72,62	23,441	27,17
		72,64	23,541	28,26
		72,72	22,113	26,766

calibrator=CTRL nerve

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proliferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

How many molecules/µl of plasmid DNA do you have in your tube?

- you cloned NRG1-typeIIIβ3 (900 bp) in a vector long 3000 bp.
- you carried out a DNA miniprep
- you read 2 μ l of your DNA diluted in 1ml H₂O at the spectrofotometer and you obtain an absorbance at 260nm = **0.05 OD**

Conversion factor: **10D** = **50** μg **DNA/ml**

- 1-How much DNA ($\mu g/\mu I$) do you have in your original tube? $\mu g/\mu I$
- 2-How many **molecules/μl** do you have in your tube? x 10 to the power**molecules/μl**

Suggestion:

- You have to calculate the molecular weight of your construct, considering that each nucleotide is about 330 Dalton:.....
- Then you have to calculate how many moles you have in 1 μl

How many molecules/µl of plasmid DNA do you have in your tube?

- you cloned NRG1-typeIIIβ3 (900 bp) in a vector long 3000 bp.
- you carried out a DNA miniprep
- you read 2 μ l of your DNA diluted in 1ml H₂O at the spectrofotometer and you obtain an absorbance at 260nm = **0.05 OD** Conversion factor: **10D = 50 \mug DNA/ml**
- 1-How much DNA ($\mu g/\mu I$) do you have in your original tube?

How many molecules/µl of plasmid DNA do you have in your tube?

- you cloned NRG1-typeIIIβ3 (900 bp) in a vector long 3000 bp.
- you carried out a DNA miniprep
- you read 2 μ l of your DNA diluted in 1ml H₂O at the spectrofotometer and you obtain an absorbance at 260nm = **0.05 OD** Conversion factor: **10D = 50 \mug DNA/ml**
- 1-How much DNA ($\mu g/\mu I$) do you have in your original tube?
- 1 OD : 50μg DNA/ml = 0.05 OD : X μg DNA/ml
- X μ g DNA/ml = (0.05 OD x 50 μ g DNA/ml) / 1 OD = 2.5 μ g/ml in the cuvette used to read your sample at the spectrofotometer.

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

First case:

- the two enzymes cut in the same buffer

Second case:

- the two enzymes cut in very different buffers

Third case:

- the two enzymes cut in very similar buffers

1X NEBuffer 1: 10 mM Bis-Tris-Propane-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.0 @ 25°C

1X NEBuffer 2: 50 mM NaCl 10 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C 1X NEBuffer 3: 100 mM NaCl 50 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

1X NEBuffer 4:
20 mM Tris-acetate
50 mM potassium acetate
10 mM Magnesium Acetate
1 mM Dithiothreitol
pH 7.9 @ 25°C

HindIII

1X NEBuffer 2:

50 mM NaCl 10 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

1X NEBuffer 3:

100 mM NaCl 50 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

Pstl

Only for teaching purposes - not for reproduction or sale

1X NEBuffer 2:

50 mM NaCl 10 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

1X NEBuffer 3:

100 mM NaCl 50 mM Tris-HCl

10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

HindIII PstI

1X NEBuffer 2:

50 mM NaCl 10 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

1X NEBuffer 3:

100 mM NaCl 50 mM Tris-HCl 10 mM MgCl2 1 mM Dithiothreitol pH 7.9 @ 25°C

Digest DNA first with enzyme HindIII, which cut in buffer 2

DNA 20 ul
Buffer 2 10x 5 ul
BSA 10x 5 ul
HindIII 20u/ul 1 ul
Water 21 ul

Tot 50 ul

Verify that HindIII completely digested DNA, running 5 ul on agarose gel

Digest the remaining 45 μ l of DNA with the second enzyme PstI which cuts in buffer 3.

Do not load DNA on a column to purify it, but increase the volume of the reaction to 100 μ l and add buffer*, NaCl and Tris buffer to convert the buffer 2 into buffer 3.

*Try two approaches:

1-add buffer 2

2-add buffer 3

A) ADD BUFFER 2

45 µl DNA digested in buffer 2 Buffer 2 10x μ l NaCl 1M μ l Tris HCl 1M μ l water 10x μ l BSA Enzyme Pstl 20u/ul μΙ $100 \; \mu l$ Tot

B) ADD BUFFER 3

DNA digested in buffer 2	45 μl
Buffer 3 10x	μl
NaCl 1M	μl
Tris HCl 1M	μl
water	μl
BSA 10x	μl
Enzyme Pstl 20u/ul μl	
Tot 1	00 μl

- Summary
- https://www.ensembl.org/index.html
- https://en.vectorbuilder.com/
- Welcome test & goodbye test
- Exercise: Transwell assay correction
- Exercize: Ingredients western blot correction
- Exercize: proiferation assay
- Exercize: real time PCR for p75
- Exercize & Correction: How many molecules/μl of plasmid DNA
- How to modify a buffer to another buffer
- Last subcloning

PROJECT OVERVIEW

