

Summary of the previous lesson

 real examples and exercizes of co-IP to identify the proteins involved in a complex and the domain responsible of the interaction

 phosphorylation analysis using antibodies for generic phospho-tyrosines (p-Y) or for specific phosphotyrosines

How to study the activity of a kinase

- phosphorylation of its substrates (using generic Ab α P-Y or Ab α specific phospho-tyrosines)
- kinase assay

How to study the role of a specific tyrosine (or serine or threonine)

use of phosphomimetics

How to study the activity of a kinase

- phosphorylation of its substrate (using generic Ab α P-Y or Ab α specific phospho-tyrosines)
- kinase assay

Does my protein of interest have kinase activity?

Does a kinase interact with my protein of interest?

Does my protein of interest have Kinase activity?

KINASE ASSAY

-to the co-IP add the substrate and ATP

IP α protein of interest

Kinase assay

SDS-PAGE

Does my protein of interest have Kinase activity?

-to the co-IP add the substrate and ATP

 H_2N

Kinase assay

KINASE ASSAY

-to the co-IP add the substrate and ³²P γ-ATP

Kinase reaction

SDS-PAGE

If the substrate is not a protein?

total cell extract -> WB α phospho-c-Jun (Ser63)

IP α JNK -> Kinase assay

Thin layer cromatography

How to study the activity of a kinase

analysis of the phosphorylation of its substrate

kinase assay

How to study the role of a specific tyrosine (or serine or threonine)

phosphomimetics

threonine phospho-threonine

thyrosine phospho-thyrosine

Phosphorylation is a common mode of activating or deactivating a protein as a form of regulation.

Within cells, proteins are commonly modified at **serine**, **tyrosine** and **threonine** amino acids by adding a phosphate group.

H
$$\stackrel{\text{H}}{\circ}$$
 O $\stackrel{\text{N-C-C}}{\circ}$ O $\stackrel{\text{H}}{\circ}$ O

phospho-serine

H
$$\square$$
 O \square O \square

phospho-thyrosine

aspartate/aspartic acid

glutamate/ glutamic acid

$$\begin{array}{ccc}
O & & H & & H \\
C & & C - & N & H \\
HO & & CH_3 & H
\end{array}$$

alanine

phenylalanine

phospho-threonine

Phosphomimetics

Some amino acids appear chemically similar to phosphorylated amino acids. **Phosphomimetics** are amino acid substitutions that mimic a phosphorylated protein, thereby activating (or deactivating) the protein.

For example, aspartic acid and glutamate are used to obtain pseudophosphorylation while alanine and phenylalanine are used to obtain not-phosphorylable aminoacids.

		AMINO ACID			AMINO ACID				
Nonpolar, aliphatic R groups	COOTH3N - C - H H Glycine COOTH3N - C - H CH2 CH2 CH3 CH3 Leucine	CH ₂ I S CH ₃	COOTH3N-C-H CH3N-CH3 CH3 Valine COOTH3N-C-H H-C-CH3 CH2 CH2 CH3	R groups Positively charged R groups	COO ⁻ I H ₃ N - C - H CH ₂ I CH ₃ I CH ₄ I	00-	COO- H ₃ N - C - H CH ₂ C - NH+ CH C - N Histidine		
Polar, uncharged R groups	COO ⁻ H ₃ N - C - H CH ₂ OH Serine COO ⁻ I H C CH ₂ H ₂ N CH ₂ H ₂ C - CH ₂	COO- H_3N-C-H $H-C-OH$ CH_3 Threonine $COO^ H_3N-C-H$ CH_2 C		Nonpolar, aromatic R groups Negatively charged R groups	C	H ₂	COO-		

Second Letter											
		U		С			4	G			
	כ	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	⊃ C ∢ G	
1st	U	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	⊃ ∪ ∢	3rd
letter	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	UCAG	letter
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	⊃∪4	

```
Ala = Alanine (A)
                       Leu = Leucine (L)
                       Lys = Lysine (K)
Arg = Arginine (R)
Asn = Asparagine (N)
                       Met = Methionine (M)
Asp = Aspartate (D)
                       Phe = Phenylalanine (F)
                       Pro = Proline (P)
Cys = Cysteine (C)
Gln = Glutamine (Q)
                       Ser = Serine (S)
                       Thr = Threonine (T)
Glu = Glutamate (E)
Gly = Glycine (G)
                       Trp = Tryptophan (W)
His = Histidine (H)
                       Tyr = Tyrosine (Y)
                       Val = Valine (V)
Ile = Isoleucine (1)
```

Standard genetic code

	Standard genetic code										
1st		2nd base									
base	U		С			Α		base			
	UUU	(Dha(E) Dhamidalanina	UCU	(Ser/S) Serine	UAU	(Tyr/Y) Tyrosine	UGU	(Cur (C) Curtain	U		
	UUC	(Phe/F) Phenylalanine	UCC		UAC		UGC	(Cys/C) Cysteine	С		
U	UUA		UCA		UAA	Stop (Ochre)[B]	UGA	Stop (Opal)[B]	Α		
	UUG ^[A]	(Leu/L) Leucine	UCG		UAG	Stop (Amber)[B]	UGG	(Trp/W) Tryptophan	G		
	CUU		CCU	(Pro/P) Proline	CAU	(His/H) Histidine	CGU		U		
_	CUC		ccc		CAC		CGC		С		
С	CUA		CCA		CAA	(Cla/O) Clutamina	CGA	(Arg/R) Arginine	Α		
	CUG ^[A]		CCG		CAG	(Gln/Q) Glutamine	CGG		G		
	AUU		ACU	(Thr/T) Threonine	AAU	(Asn/N) Asparagine (Lys/K) Lysine	AGU	(C(C) Ci	U		
	AUC	(Ile/I) Isoleucine	ACC		AAC		AGC	(Ser/S) Serine	С		
Α	AUA		ACA		AAA		AGA	(Ara/D) Arainina	Α		
	AUG ^[A]	(Met/M) Methionine	ACG		AAG		AGG	(Arg/R) Arginine	G		
	GUU		GCU	(Ala/A) Alanine	GAU	(Asp/D) Aspartic acid	GGU		U		
G	GUC	(Val/V) Valine	GCC		GAC		GGC	(Oh)(O) Oharina	С		
	GUA		GCA		GAA	(Ob.(E) Ob.tiid	GGA	(Gly/G) Glycine	Α		
	GUG		GCG		GAG	(Glu/E) Glutamic acid	GGG		G		

1. Mutant strand synthesis

Perform thermal cycling to:

- denature DNA template
- anneal mutagenic primers containing desired mutation
- extend and incorporate primers with PfuUltra DNA polymerase

2. Dpnl digestion of template

Digest parental methylated and hemimethylated DNA with DpnI *DpnI* cleaves only when its recognition site is methylated. DNA purified from a dam⁺ strain will be a substrate for *DpnI*.

3. Transformation

Transform mutated molecule into competent cells for nick repair

Please describe in a very schematic manner how would you test if tyrosine 1349 of the Met oncogene is involved in the interaction between Met and PI3K following stimulation with HGF/SF (Ex: "transfect cells with..."; "extract proteins"; ...).

Please, indicate how many cell plates are necessary for the entire experiment and try to imagine the results you will obtain if the hypothesis is correct.

Please describe in a very schematic manner how would you test if tyrosine 1349 of the Met oncogene is involved in the interaction between Met and PI3K following stimulation with HGF/SF

A possible longer answer:

- To answer this question we need 4 plates, two transfected with an expression vector for Met wild type (WT), two transfected with an expression vector for Met with tyrosine 1349 mutated to phenylalanine (Y1349F).
- For each construct (WT and Y1349F) we have a mock sample and a sample stimulated with HGF. After stimulation we extract the proteins, we save an aliquot of total cell lysate and we perform IP against Met.
- Then a SDS-PAGE is carried out with total cell lysates and IP samples, followed by western blot for PI3K and Met.
- In the total cell lysate I will verify the expression of Met and PI3K, in the IP I will verify if PI3K interact with Met and if this interaction is abolished when the tyrosine 1349 is mutated to phenylalanine. With WB anti Met I will verify if Met is correctly immunoprecipitated.

Please describe in a very schematic manner how would you test if tyrosine 1349 of the Met oncogene is involved in the interaction between Met and PI3K following stimulation with HGF/SF

A possible more schematic answer:

- 4 plates, two transfected with Met wild type (WT), two transfected with Met Y1349F,
- -/+ HGF treatment
- protein extraction
- IP against Met
- SDS-PAGE on total cell lysates and IP
- western blot for PI3K and Met
 - to verify if PI3K interacts with Met WT
 - to investigate if PI3K interacts or not with Met when tyrosine is mutated to phenylalanine.

If they do not interact when Y 1349 is mutated to F, it suggests that the tyrosine phosphorylation is necessary for PI3K-Met interaction.

WB α PI3K

 $WB \alpha Met$

In this panel Met and PI3K do not interact when Y 1349 is mutated to F, thus suggesting that the phosphorylation of tyrosine 1349 is necessary for PI3K-Met interaction.

- identification of pathways involved in transformation and metastasis

Docking site mutants

Tpr-Met ^{Wt} Tpr-Met ^{Double}	YVHVNATYVNV <u>F</u> VHVNAT <u>F</u> VNV
Tpr-Met ^{Grb2-}	YVHVNATYV <u>H</u> V
$Tpr-Met^{2\times Grb2}$	YV <u>N</u> VNATYVNV
$Tpr-Met^{2\times PI3K}$	Y <u>MPM</u> NATY <u>MDM</u>
Tpr-Met ^{PI3K/Grb2}	Y <u>MPM</u> NATYVNV

Signalling mutants of the oncogenic form of the Met receptor (Tpr-Met) were generated by site-directed mutagenesis. The consensus sequences for the SH2 domains of Grb2 and p85 (the regulatory subunit of PI 3-kinase) were designed according to Songyang et al. (1993). Mutagenized residues are underlined.

Kinase activity of Tpr-Met mutants

- wild type and mutant Tpr Met proteins were immunoprecipitated from COS-1 cells transfected with the corresponding constructs, using antibodies specific for human *Met*
- immunoprecipitated proteins were subjected to in vitro kinase assay with $[\gamma^{-32}P]ATP$
- labeled proteins were separated on 8% SDS-PAGE

Association of Tpr-Met mutants with Grb2

- fused protein: **Grb2-glutathione-transferase**, immobilized on sepharose-glutathione beads
- transient transfection of COS cells with various Tpr-Met constructs
- protein extraction
- "pull down": extracted proteins incubated together with the beads: some proteins bind to Grb2 and precipitate together with the
- kinase assay in vitro on precipitated proteins (with γ -32P ATP)
- X-ray film exposure
- bands are proteins precipitated together with Grb2 and are radioactive because they are phosphorylated with radioactively labeled ATP

Grb2 fusion protein (approximately 500 ng/point) was immobilized on Glutathione-Sepharose beads and incubated with lysates of COS-1 cells containing comparable amounts of Tpr-Met mutants. Complexes were washed and the amount of Tpr-Met bound to Grb2 was visualized by in vitro kinase assay with $[(\gamma^{-32}P)]$ ATP. Labeled proteins were separated on 8% SDS± PAGE.

PULL-DOWN

Sepharose beads-glutatione

GLUTATIONE TRANSFERASE

BAIT PROTEIN

PULL-DOWN

Sepharose beads-glutatione

GLUTATIONE TRANSFERASE

Grb2

• slow rotation over-night @ 4°C in order that the "bait" protein (fused with glutatione transferase) meets all proteins you have in your protein extract

- spin 3000 rpm, 1 min, @ 4°C
- in the pellet you will find: sepharose beads-glutatione—
 glutatione transferase-bait protein and proteins bound to the
 bait protein
- in the surnatant: **proteins not bound to the bait protein**

Continue as for co-precipitation:

- add SDS & β-mercapto-ethanol
- boil 4 minutes @ 100 °C, spin and analyse the surnatant by SDS-PAGE and western blot

