

Biotechnology Project Lab

Giovanna Gambarotta & Isabella Tarulli

The lecture is about to begin....

Biotechnology project

- identification of specific exons belonging to different NRG1 isoforms
- identification of exons and introns using BLAST and Ensemble
- use of Annhyb to design primers and to organize and edit sequences
- design primers for isoform specific expression analysis and for full length cDNA cloning
- design primers for quantitative gene expression analysis
- design primers for full length cDNA cloning (with additional restriction enzyme sites to facilitate cloning and subcloning)
- plan a reverse transcriptase (RT) reaction with positive and negative controls
- plan a polymerase chain reaction (PCR) with positive and negative controls
- use of Chromas to read an electropherogram
- plan cloning and subcloning from a vector to another vector
- restriction enzyme analysis and preparation of plasmid maps (with neb-cutter or other apps)
- blunting sticky ends
- project hybrid proteins fused with GFP
- project proteins with a FLAG tag
- solve some typical problems you can encounter in the laboratory like:
- analyze relative/absolute quantitative real time PCR data
- analyze protein quantification data
- calculate the amount of cells you have to plate for a specific experiment
- calculate the amount of ingredients in a reaction or to prepare a solution

Biotechnology project

- identification of specific domains belonging to different NRG1 isoforms

- identification of exons and introns using BLAST and Ensemble
- use of Annhyb to design primers and to organize and edit sequences
- design primers for isoform specific expression analysis and for full length cDNA cloning
- design primers for quantitative gene expression analysis
- design primers for full length cDNA cloning (with additional restriction enzyme sites to facilitate cloning and subcloning)
- plan a reverse transcriptase (RT) reaction with positive and negative controls
- plan a polymerase chain reaction (PCR) with positive and negative controls
- use of Chromas to read an electropherogram
- plan cloning and subcloning from a vector to another vector
- restriction enzyme analysis and preparation of plasmid maps (with neb-cutter or other apps)
- blunting sticky ends
- project hybrid proteins fused with GFP
- project proteins with a FLAG tag
- solve some typical problems you can encounter in the laboratory like:
- analyze relative/absolute quantitative real time PCR data
- analyze protein quantification data
- calculate the amount of cells you have to plate for a specific experiment
- calculate the amount of ingredients in a reaction or to prepare a solution

Today aims:

- 1-introduction on NRG1 and its the different isoforms
- 2-comparison of sequences to identify specific NRG1 domains
- 2-welcome test

NRG1 receptors belong to the ErbB receptor family

The ErbB signalling network

NRG1 alternative splicing isoforms

NRG1 alternative splicing isoforms

rat NRG1 sequences

NRG1 alternative splicing isoforms

If you want to identify α and β isoforms, where can you put primers for RT-PCR?

α and β isoforms

NRG1 alternative splicing isoforms

If you want to identify type I, type II and type III isoforms, where can you put primers for RT-PCR?

Type I, II, III isoforms

Preliminary study of NRG1 sequences to identify specific domains

- 1- download the three rat sequences of type III NRG1 from the ncbi site
- 2- copy only the coding sequences (form ATG to STOP) and save them in Annhyb (with name and code) or in a text/doc file.
- 3-pairwise compare the 3 different rat NRG1 type III sequences using BLAST to identify the sequences coding for α and β domains.
- 4-load in moodle the sequences corresponding to α and β domains.
- 5- compare the different rat sequences to identify the regions corresponding to the EGF-like domain, type I, type II, type III domains.

I aim: identify α and β domains to design primers for RT-PCR.

http://www.ncbi.nlm.nih.gov/

Rattus norvegicus SMDF neuregulin alpha 2a (Nrg1) mRNA, complete cds, alternatively spliced

```
GenBank: AF194439.1
FASTA
       Graphics
Go to: ☑
LOCUS
            AF194439
                                     2540 bp
                                                        linear ROD 01-NOV-2000
DEFINITION
            Rattus norvegicus SMDF neuregulin alpha 2a (Nrg1) mRNA, complete
            cds, alternatively spliced.
ACCESSION
            AF194439
VERSION
            AF194439.1
KEYWORDS
SOURCE
            Rattus norvegicus (Norway rat)
  ORGANISM
            Rattus norvegicus
            Eukaryota; Metagoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
            Muroidea; Muridae; Murinae; Rattus.
REFERENCE
            1 (bases 1 to 2540)
  AUTHORS
            Carroll, S.L., Anderson, K.D. and Frohnert, P.W.
  TITLE
            Structural and Functional Diversity of SMDF Neurequlin Splice
            Variants Expressed in the Adult Rat Nervous System
  JOURNAL
            Unpublished
REFERENCE
            2 (bases 1 to 2540)
  AUTHORS
            Carroll, S.L., Anderson, K.D. and Frohnert, P.W.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (13-OCT-1999) Pathology, The University of Alabama at
            Birmingham, 1720 Seventh Avenue South, SC843, Birmingham, AL
            35294-0017, USA
FEATURES
                     Location/Qualifiers
                     1..2540
     source
                     /organism="Rattus norvegicus"
                     /mol type="mRNA"
                     /strain="BDIX"
                     /db xref="taxon:10116"
                     /cell line="JS1 schwannoma"
                     /note="cell line derived from a peripheral nerve sheath
                     tumor induced by in utero treatment with nitrosoethylurea"
                     1..2540
                     /gene="Nrg1"
     CDS
                     370..2457
                     /gene="Nrg1"
                     /note="sensory and motor neuron-derived factor splice
```

Customize view Analyze this sequence Run BLAST Pick Primers Highlight Sequence Features Find in this Sequence Articles about the Nrg1 gene Neuregulin-1 impacting bone marrow mesenchymal stem cell mi [Mol Med Rep. 2019] Neuregulin-1β attenuates sepsis-induced diaphragm atrop [J Muscle Res Cell Motil. 2019] Neuregulin-1 protects cardiac electrical conduction through downregs [Pharmazie, 2019] See all. Pathways for the Nrg1 gene Downregulation of ERBB2 signaling RET signaling EGFR tyrosine kinase inhibitor resistance See all. Reference sequence information RefSeq alternative splicing See 21 reference mRNA sequence splice variants for the Nrg1 gene.

More about the Nrg1 gene


```
LSSVIANODPIAV"
ORIGIN
       1 gaatteggea egaggeggea gettgettee tattttggte eeetgeette ttgaccaace
      61 cggcatggtt tggagaagca tttgaaagaa ctgaaaaagt gtcccagaaa caacagctca
     121 agatatttcg gtacacttct atttcatagt tgctagaagc cctttctttt ttcgtttttt
     181 ttttttcttt ttcttttct ttttcttttt ccttttcctg cttcctccta agctctggta
     241 ctttgggtaa ttgccttgga cttgggtgcc ttatcgattt ccccctccaa gatgctgtat
     301 catttqqttq qqqgqaqctc tqcqtqqtaa tqcactqtqa qaqaqqccaq qccttctqqa
     361 gqtqaqccqa tqqaqattta ttccccagac atgtctgagg tagctggcgg gaggtcctcc
         agcccctcca ctcagctgag tgcagttcca tctcttgatg ggcttccggc agcggaggaa
         catataccag acacccacac agaagatgag agaagccctg gactcctggg cctggcggtg
     541
         ccctgctgtg tgtgcctgga agctgagcgc ctgagagggt gtctcaactc cgagaagatc
         tgcattgttc ccattctggc ttgcctagtc agcctctgcc tctgcattgc tggcctgaag
         tgggtatttg tggacaagat atttgaatac gactctccta cccaccttga ccctgggggg
         ttaggccagg accetgtgat ttetetggat ccaactgetg ceccagecat tttggtatca
         tccgaggcat acacttcacc tgtctctaag gctcagtctg aagctggggc tcatgttaca
         gtacaaggtg accatgctgc tgtggcctct gaaccttcag cagtaccgac ccggaagaac
         acccctgagg tgagaacacc caagtcagga actcagccac aaacaacaga aactaacctg
     1021
         caaactgete ctaaacttte cacatcaaca tecaegaetg ggaccageca teteataaag
    1081
         tgtgcggaga aggagaaaac tttctgtgtg aatgggggcg agtgcttcac ggtgaaggac
    1141
         ctgtcaaacc cgtcaagata cttgtgcaag tgccaacctg gattcactgg agcaagatgt
     1201
         actgagaatg tacccatgaa agtccaaacc caagaaaaag cggaggaact ctaccagaag
    1261
          agggtgctga caattactgg catctgtatc gccctgctgg tggtcggcat catgtgtgtg
         gtggcctact gcaaaaccaa gaagcagcgg cagaagette atgategget teggeagagt
         cttcqqtcaq aacqqaqcaa cctqqtqaac ataqcqaatq qqcctcacca cccaaacccq
         ccqccaqaqa acqtqcaqct qqtqaatcaa tacqtatcta aaaacqtcat ctccaqtqaq
         catattgttg agagagaagt ggagacttcc ttttccacca gtcattacac ttccacagco
    1561
         catcactcca cqactgtcac ccagactcct agtcacagct ggagtaatgg gcacacggag
    1621 agcgtcattt cagaaagcaa ctccgtaatc atgatgtctt cggtagagaa cagcaggcac
```

This is the coding sequence (CDS) only. You have to SELECT it, copy and paste.

```
ORIGIN
        1 gaatteggea egaggeggea gettgettee tattttggte eeetgeette ttgaecaace
       61 cggcatggtt tggagaagca tttgaaagaa ctgaaaaagt gtcccagaaa caacagctca
      121 agatatttcg gtacacttct atttcatagt tgctagaagc cctttcttt ttcgtttttt
      181 ttttttcttt ttcttttct ttttcttttt ccttttcctg cttcctccta agctctggta
      241 ctttgggtaa ttgccttgga cttgggtgcc ttatcgattt ccccctccaa gatgctgtat
      301 catttggttg gggggagctc tgcgtggtaa tgcactgtga gagaggccag gccttctgga
      361 ggtgagccga tggagattta ttccccagac atgtctgagg tagctggcgg gaggtcctcc
      421 ageceeteea eteagetgag tgeagtteea tetettgatg ggetteegge ageggaggaa
      481 catataccag acacccacac agaagatgag agaagccctg gactcctggg cctggcggtg
      541 ccctgctgtg tgtgcctgga agctgagcgc ctgagagggt gtctcaactc cgagaagatc
      601 tgcattgttc ccattctggc ttgcctagtc agcctctgcc tctgcattgc tggcctgaag
      661 tgggtatttg tggacaagat atttgaatac gactctccta cccaccttga ccctgggggg
      721 ttaggccagg accetgtgat ttetetggat ceaactgetg ecceagecat tttggtatea
      781 tccgaggcat acacttcacc tgtctctaag gctcagtctg aagctggggc tcatgttaca
      841 gtacaaggtg accatgctgc tgtggcctct gaaccttcag cagtaccgac ccggaagaac
      901 eggetgtetg etttteetee ettteaceet actgeacege eetteeette teeagetegg
      961 acccctgagg tgagaacacc caagtcagga actcagccac aaacaacaga aactaacctg
     1021 caaactgctc ctaaactttc cacatcaaca tccacgactg ggaccagcca tctcataaag
     1081 tgtgcggaga aggagaaaac tttctgtgtg aatgggggcg agtgcttcac ggtgaaggac
```

You have to SELECT it, copy and paste in Annhyb, or in doc/text document.

Welcome to NCBI

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

About the NCBI | Mission | Organization | NCBI News & Blog

Submit

Deposit data or manuscripts into NCBI databases

Download

Transfer NCBI data to your computer

Learn

Find help documents, attend a class or watch a tutorial

and collaborative projects

NCBI News & B

Popular Resou

PubMed Central

PubMed Health

PubMed

BLAST

Nucleotide

Genome

SNP

Gene

Protein

PubChem

Bookshelf

GRAF, a new tool and closely relate genomic dataset

Genome-wide as

Genome Workbe

Recent updates t Workbench inclu-

Develop

Use NCBI APIs and code libraries to build applications

Analyze

Identify an NCBI tool for your data analysis task

Research

Explore NCBI research

Only for teaching purposes - not for reproduction or sale

Three rat NRG1 type III sequences

When you compare AF194439 with AF194438, the NON ALIGNED parts correspond to

- the domain in the AF194439 sequence
- the domain in the AF194438 sequence

Three rat NRG1 type III sequences

When you compare AF194439 with AF194438, the NON ALIGNED parts correspond to

- the α domain in the AF194439 sequence
- the β1 domains in the AF194438 sequence

When you compare AF194439 with AF194438, the NON ALIGNED parts correspond to

- the α domain in the AF194439 sequence
- the β1 domains in the AF194438 sequence

When you compare AF194438 with DQ176766, the **ALIGNED** parts correspond to **-type I-EGF-like-beta** domains in both sequences

Where does domain β end? Where does domain 1 start? Where does domain 3 start?

Il aim: identify EGF-like, type I, II, III domains

• upload all information corresponding to α , β , EGF-like domain, type I, type II and type III domains in your moodle page.

I will not correct all your single activities. I will check only a few, chosen at random.

I will upload the correct answers and you will have to verify the correctness of your results.