Towards a more adeguate motif scoring function

CSRE element in yeast

5 strongly conserved positions and eleven weakly conserved positions each of which features two uncle with similar frequencies.

NF-kB

		1 T	2 C	3 G	4 G	5 G	6 G	7 A	8 T/C	9 T	10 T	11 C	12 C/T
ee en (mouns)	G: T:	0 7	0 2	10 0	10 0	9 1	9 1	1 0	0 5	0 8	0 7	0 3	0 4
COUNT(Motifs)	C:	1	6	0	0	0	0	0	4	1	2	4	6
	A:	2	2	0	0	0	0	9	1	1	1	3	0

last column is *more conserved* than the second column and should receive a lower score

Entropy

With matrices

Entropy corresponds to a probability distribution, it is a measure of the uncertainty of a probability distribution.

→ 0.2 log2 0.2+ 0.6 log2 0.6+ 0 log2 0+ 0.2 log2 0.2 = 1.371

 \rightarrow 0 log2 0+ 0.6 log2 0.6+ 0 log2 0+ 0.4 log2 0.4 = 0.971

→ 0 log2 0+ 0 log2 0+ 0.9 log2 0.9+ 0.1 log2 0.1 = 0.467

The more conserved the columns the smaller its entropy

The motif finding problem - Score

With matrices

Motif Finding Problem

given a collection of strings, find a set of k-mers, one from each string, that minimises the score of the resulting motif.

input: A collection of strings DNA and a integer k

output: A collection Motif of k-mers, one from each string in DNA, minimising SCORE(Motifs) among all possible choices of k-mers

BruteForce algorithm, for every possibile kmer from a DNA it is necessary compute the score value and returns those having the minimum score

The motif finding problem - Profile

With matrices

Motifs be a collection of k-mers taken from t strings of DNA The *entropy* of each column of a PWM is like a four-side dice:

A 0.2A generated with probability 0.2C 0.1C generated with probability 0.1G 0.0G generated with probability 0.0T 0.7T generated with probability 0.0

T generated with probability 0.7

	A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
Profile	C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
Tiome	G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
	T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4
Pr(ACGGGGGATTACC Profile)	$= .2 \cdot .6 \cdot 1 \cdot 1 \cdot .9 \cdot .9 \cdot .9 \cdot .5 \cdot .8 \cdot .1 \cdot .4 \cdot .6 = 0.000839808$

Profile-most Probable k-mer Problem

find a Profile-most probable k-mer in a string **input**: A string DNA, a integer k, and a 4 X k matrix Profile **output**: A profile-most probable k-mer in DNA

With matrices

Scoring a Sequence

Courtesy of Kenzie MacIsaac and Ernest Fraenkel. Used with permission. MacIsaac, Kenzie, and Ernest Fraenkel. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs." *PLoS Computational Biology* 2, no. 4 (2006): e36.

Common threshold = 60% of maximum score

MacIsaac & Fraenkel (2006) PLoS Comp Bio

Scoring A Sequence

To score a sequence, we compare to a null model

$$Score = \log \frac{P(S \mid PFM)}{P(S \mid B)} = \log \prod_{i=1}^{N} \frac{P_i(S_i \mid PFM)}{P(S_i \mid B)} = \sum_{i=1}^{N} \log \frac{P_i(S_i \mid PFM)}{P(S_i \mid B)}$$

Without matrices

Equivalent Motif Finding Problem

given a collection of strings, find a pattern and a collection of kmers (one for each string) that minimises the distance between all possible patterns and all possibile collections of k-mers.

input: A collection of strings DNA and a integer k

output: A k-mer pattern and a collection of k-mers Motifs, one from each string in DNA, minimising d(Pattern, Motifs) among all possible choices of Pattern and Motifs

d(pattern, motifs) = HAMMING DISTANCE (Pattern, Motif)

BUT given a Pattern, we do not need to explore all possible collection of Motifs in order to minimise d(Pattern, Motifs)

 $d(Pattern, Text) = \min_{\text{all } k \text{-mers } Pattern' \text{ in } Text} \text{HAMMINGDISTANCE}(Pattern, Pattern').$

d(GATTCTCA, gcaaaGACGCTGAccaa) = 3.

MOTIF(GATTCTCA, gcaaaGACGCTGAccaa) = GACGCTGA.

Median string Problem

find a median string

input: A collection of strings DNA and a integer k

output: A k-mer pattern minimising d(Pattern, DNA) among all k-mers Pattern

MEDIANSTRING(Dna, k)
distance $\leftarrow \circ$	0
for each k-m	er Pattern from AAAA to TTTT
if distance	e > d(Pattern, Dna)
distan	$ce \leftarrow d(Pattern, Dna)$
Media	$n \leftarrow Pattern$
return Media	n

Greedy motif search

Greedy algorithm select the most attractive alternative at each iteration

```
GREEDYMOTIFSEARCH(Dna, k, t)BestMotifs \leftarrow motif matrix formed by first k-mers in each string from Dnafor each k-mer Motif in the first string from DnaMotif1 \leftarrow Motiffor i = 2 to tform Profile from motifs Motif1, ..., Motifi-1Motifi \leftarrow Profile-most probable k-mer in the i-th string in DnaMotifs \leftarrow (Motif1, ..., Motift)if SCORE(Motifs) < SCORE(BestMotifs)</td>BestMotifs \leftarrow Motifsreturn BestMotifs
```

tt**ACCT**taac g**ATGT**ctgtc acg**GCGT**tag cccta**ACGA**g cgtcag**AGGT**

If the algorithm has chosen ACCT from the first string, what is the profile?

Laplace's rule of succession

To improve the unfair scoring, often substitute zeros with small number called **pseudo counts**

Laplace's rule of succession adds 1 to each element to COUNT(motif)

	A: 2+	1 1+1 1+	1 1+1	al Prin Stra	3/8	2/8	2/8	2/8
COUNT (Malife)	C: 0+1	l 1+1 1+	1 1+1	PROFILE (Motife)	1/8	2/8	2/8	2/8
COUNT (Motifs)	G: 1+1	1+1 1+	1 0+1	I KOFILE(MOUJS)	2/8	2/8	2/8	1/8
	T: 1+1	1+1 1+	1 2+1		2/8	2/8	2/8	3/8
				建立的 是一种的影响。 计算法				MIN

Greedy motif search

Greedy algorithm select the most attractive alternative at each iteration

```
GREEDYMOTIFSEARCH(Dna, k, t)BestMotifs \leftarrow motif matrix formed by first k-mers in each string from Dnafor each k-mer Motif in the first string from DnaMotif_1 \leftarrow Motiffor i = 2 to tform Profile from motifs Motif_1, \dots, Motif_{i-1}Motif_i \leftarrow Profile-most probable k-mer in the i-th string in <math>DnaMotifs \leftarrow (Motif_1, ..., Motif_t)if SCORE(Motifs) < SCORE(BestMotifs)BestMotifs \leftarrow Motifsreturn BestMotifs
```

apply Laplace's Rule of Succession to form Profile from Motif1... Motif i-1

Greedy motif search - in action

With matrices

	tt ACCT taac						Motifs	ACCT				
	gATGTctgtc	the state of the s	A:	1+1	0+1	0+1	0+1	the difference of the second	2/5	1/5	1/5	1/5
Dna	acgGCGTtag	C	C:	0+1	1+1	1+1	0+1	Promy r(Matifa)	1/5	2/5	2/5	1/5
	ccctaACGAg	COUNT(Motifs)	G:	0+1	0+1	0+1	0+1	PROFILE(Motifs)	1/5	1/5	1/5	1/5
	cgtcagAGGT		T:	0+1	0+1	0+1	1+1		1/5	1/5	1/5	2/5

If we use profile matrix to compute the probabilities of all 4-mres in the second string of DNA

We get lucky and we choose the implanted 4-mers ATGT

	A:	2+1	0+1	0+1	0+1	A second second	3/6	1/6	1/6	1/6
	C:	0+1	1+1	1+1	0+1	PROFILE (Motifs)	1/6	2/6	2/6	1/6
COUNT(Motifs)	G:	0+1	0+1	1+1	0+1	I KOFILE(Iviolijs)	1/6	1/6	2/6	1/6
	T:	0+1	1+1	0+1	2+1		1/6	2/6	1/6	3/6

Greedy motif search - in action

that ACGG is selected instead the GCGT

		Motifs	ATGT acgG	
COUNT(Motifs)	A: 3+1 0+1 C: 0+1 2+1 G: 0+1 0+1 T: 0+1 1+1	0+1 1+1 1+1 0+1 2+1 1+1 0+1 2+1	PROFILE(Motifs)	4/7 1/7 1/7 1/7 1/7 3/7 2/7 1/7 1/7 1/7 3/7 2/7 1/7 2/7 1/7 3/7

ccct	ccta	ctaA	ta AC	aACG	ACGA	CGAg
18/74	3/74	2/74	1/74	16/74	36/74	2/74

While in this case the profile-most probable 4mer is ACGA

			Motifs	ACCT ATGT acgG ACGA				
COUNT (Motifs)	A: 4+1 C: 0+1 G: 0+1 T: 0+1	0+1 0 3+1 1 0+1 3 1+1 0	0+1 0+1 +1 0+1 +1 1+1 +1 1+1 +1 2+1	PROFILE(Motifs)	5/8 1/8 1/8 1/8	1/8 4/8 1/8 2/8	1/8 2/8 4/8 1/8	2/8 1/8 2/8 3/8

Greedy motif search - in action

		cgtc 1/8 ⁴	gtca 8/8 ⁴	tcag 8/8 ⁴	cag A 8/8 ⁴	ag AG 10/8 ⁴	g AGG 8/8 ⁴	AGGT 60/8 ⁴
	ttACCTtaac							
	gATGTetgte							1000 C
Dna	acgGCGTtag							ACCT
	ccctaACGAg						Mot	ifs acgG
	cgtcagAGGT							ACGA
AND DESCRIPTION OF THE OWNER						a starter		AGGT

Laplace's Rule of Succession has provided a great improvement over the original GreedyMotifSearch

CONSENSUS(Motifs) ACGT

Randomised Motif Search

Randomised algorithms may be nonintuitive because they lack the control of traditional algorithms

These algorithms are not guaranteed to return exact solutions, but they quickly find approximate solutions

Given a collection of strings DNA and an arbitrary 4 x k matrix profile, we define MOTIF(Profile,DNA) as the collections of k-mers formed by the Profile-most probable k-mers in each sequence from DNA.

Considering profile and DNA

the profile-most 4-mer from each row of DNA produces the following 4-mers:

The **general idea** is that we can begin from a collection of randomly chosen k-mers Motif in DNA construct the profile and use this profile to generate a new collection of k-mers.

```
Randomised Motif Search
```

```
RANDOMIZEDMOTIFSEARCH(Dna, k, t)
randomly select k-mers Motifs = (Motif<sub>1</sub>,..., Motif<sub>t</sub>) in each string from Dna
BestMotifs \leftarrow Motifs
while forever
Profile \leftarrow PROFILE(Motifs)
```

```
Motifs \leftarrow MOTIFS(Profile, Dna)
if SCORE(Motifs) < SCORE(BestMotifs)
BestMotifs \leftarrow Motifs
```

```
else
```

```
return BestMotifs
```

A single run may generate a poor set of motifs, then usually it is necessary run this algorithm thousand of times. In each run it begin from a new randomly selected set of k-mers and finally we select the best set of k-mers found in all these runs.

Randomised Motif Search - in action

We construct the profile matrix of the chosen 4-mers

		Ma	otifs			PROFILE(<i>Motifs</i>)									
	t	a	a	С	A:	0.4	0.2	0.2	0.2						
	G	Т	С	t	C:	0.2	0.4	0.2	0.2						
	C	С	g	G	G:	0.2	0.2	0.4	0.2						
	a	С	t	a	Т:	0.2	0.2	0.2	0.4						
	A	G	G	Т											
- 1															

ttACCT**taac** gAT**GTct**gtc Dna ccgGCGTtag cactaACGAg cgtcag**AGGT**

ttAC	tACC	ACCT	CCTt	CTta	Ttaa	taac
.0016	.0016	.0128	.0064	.0016	.0016	.0016
						1
gATG	ATGT	TGTC	GTct	Tctg	ctgt	tgtc
.0016	.0128	.0016	.0032	.0032	.0032	.0016
ccgG	cgGC	gGCG	GCGT	CGTt	GTta	Ttag
.0064	.0036	.0016	.0128	.0032	.0016	.0016
cact	acta	ctaA	taAC	aACG	ACGA	CGAg
.0032	.0064	.0016	.0016	.0032	.0128	.0016
cgtc	gtca	tcag	cagA	agAG	gAGG	AGGT
.0016	.0016	.0016	.0032	.0032	.0032	.0128
						and the second

We compute the probabilities of every 4-mer in DNA based on this profile matrix.

	tt ACCT taac
	g ATGT ctgtc
Dna	ccg GCGT tag
	cacta ACGA g
	cgtcagAGGT

Starting from a **uniform distribution** as the first profile matrix is useless because no string is more probable than any other according to this profile and it does not provide any clues on what an implanted motif looks like.

Considering that if the strings in DNA were random, then the algorithm would start form a nearly uniform profile, and there would be nothing to work with. The KEY observation is that the strings in DNA are NOT random.

AlignACE Bioprospector

The randomise strategy can discarded all k-mers in each iteration, while Gibbs sampling is more conservative.

The algorithm starts from randomly chosen k-mers in each DNA, and select an integer between 1 and t and randomly changes a single k-mer.

RANDOMIZEDN (may change all k-m	OTIFSEARCH ners in one step)	GIBBSSAM (changes one k-me	APLER er in one step)
cgtc aga ggt	cgt cagaggt	cgtc aga ggt	cgtc aga ggt
ccctaaagag	ccctaa aga g	ccct aaa gag	ccct aaa gag
acg gcgttcg \rightarrow	acggcgttcg	acg gcgttcg \rightarrow	acggcgttcg
gatatctgtc	gat atc tgtc	gatatctgtc	gatatctgtc
ttaccttaac	t tac cttaac	ttaccttaac	ttaccttaac

Gibbs Sampling

```
GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif<sub>1</sub>, ..., Motif<sub>t</sub>) in each string from Dna
BestMotifs \leftarrow Motifs
for j \leftarrow 1 to N
i \leftarrow \text{RANDOM}(t)
Profile \leftarrow profile matrix formed from all strings in Motifs except for Motif<sub>i</sub>
Motif<sub>i</sub> \leftarrow Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)
BestMotifs \leftarrow Motifs
return BestMotifs
```

Profile-randomly generated k-mer in the i-th sequence

Gibbs sampling uses an advice random number generator.

	ttACCT taac		ttACCTtaac
	gAT GTct gtc		gAT GTct gtc
Dna	ccgG CGTtag	\longrightarrow	
	cactaACGAg		cactaACGAg
	cgtcag AGGT		cgtcagAGGT

Initial step, from a set of random k-mers, the algorithm select the third string for removal.

						t	а	a	С					
					Motifs	G	Т	С	t					
						a	С	t	a					
						A	G	G	Т					
	A:	2	1	1	1					A:	2/4	1/4	1/4	1/4
COUNT(Matifa)	C:	0	1	1	1	PROI	CIT	E()	(Actifa)	C:	0	1/4	1/4	1/4
COUNT (Iviotijs)	G:	1	1	1	0	FROF	OFILE(<i>Wortfs</i>)	G:	1/4	1/4	1/4	0		
	T:	1	1	1	2					T:	1/4	1/4	1/4	2/4

ccgG	cgGC	gGCG	GCGT	CGTt	GTta	Ttag
0	0	0	1/128	0	1/256	0

COUNT(Motifs)	A: C: G: T:	3 1 2 2	2 2 2 2	2 2 2 2	2 2 1 3	PROFILE(<i>Motifs</i>)	A: C: G: T:	3/8 1/8 2/8 2/8	2/8 2/8 2/8 2/8	2/8 2/8 2/8 2/8	2/8 2/8 1/8 3/8	
---------------	----------------------	------------------	------------------	------------------	------------------	--------------------------	----------------------	--------------------------	--------------------------	--------------------------	--------------------------	--

application of Laplace's Rule to the count matrix

ccqG	cqGC	gGCG	GCGT	CGTt	GTta	Ttag
$4/8^{4}$	8/84	8/84	$24/8^4$	$12/8^4$	$16/8^4$	8/84

Gibbs sampling is not deterministic, then create a sevenface dice in which the total sum is equal to 80/8⁴

$$\begin{aligned} & \text{Random} \left(\frac{4/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}, \frac{24/8^4}{80/8^4}, \frac{12/8^4}{80/8^4}, \frac{16/8^4}{80/8^4}, \frac{8/8^4}{80/8^4} \right) \\ &= \text{Random} \left(\frac{4}{80}, \frac{8}{80}, \frac{8}{80}, \frac{24}{80}, \frac{12}{80}, \frac{16}{80}, \frac{8}{80} \right). \end{aligned}$$

The deleted string is now added but instead to use the ccgG mer, we roll the die and we obtain the mer GCGT

Dna	ttACCTtaac gATGTctgtc ccgGCGTtag → cactaACGAg cgtcagAGGT	gATGTctgtc ccgGCGTtag cactaACGAg cgtcagAGGT	Randomly selection of the deletion of the first DNA string
Motifs	GTCT GCGT ACTA AGGT	$(Motifs) \begin{array}{cccccccccccccccccccccccccccccccccccc$	application of Laplace's Rule to the count matrix

	A:	3	1	1	2		A:	3/8	1/8	1/8	2/8
COUNT(Motifs)	C:	1	3	2	1	PROFILE(<i>Motifs</i>)	C:	1/8	3/8	2/8	1/8
	G:	3	2	3	1		G:	3/8	2/8	3/8	1/8
	T:	1	2	2	4		T:	1/8	2/8	2/8	4/8

ttAC	tACC	ACCT	CCTt	CTta	Ttaa	taac
2/84	$2/8^4$	$72/8^4$	$24/8^4$	8/84	$4/8^{4}$	$1/8^{4}$

	ttACCTtaac		tt ACCT taac	
	gATGTctgtc		gATGTctgtc	Randomly selection of
Dna	ccgGCGTtag	\rightarrow	ccgGCGTtag	the deletion of the
	cactaACGAg			fourth DNA string
and the second	cgtcagAGGT		cgtcagAGGT	
			the second s	

	Motifs	A C C T G T c t G C G T	cact 15/8 ⁴	acta 9/8 ⁴	ctaA 2/8 ⁴	taAC 1/8 ⁴	aACG 9/8 ⁴	ACGA 27/8 ⁴	CG7 2/8
COUNT(Motifs)	A: 3 1 1 1 C: 1 3 3 1 G: 3 2 3 1 T: 1 2 1 5	A G G T PROFILE(<i>Motifs</i>)	A: 3/8 1/8 1/8 1/ C: 1/8 3/8 3/8 1/ G: 3/8 2/8 3/8 1/ T: 1/8 2/8 1/8 5	/8 /8 /8 /8	Pr ge	ofile-rar eneratec	ndomly 1 k-mer		

ttACCTtaacgATGTctgtcDnaccgGCGTtagcactaACGAgcgtcagAGGT

The algorithm starts to converge, but in same cases the algorithm can converge in a suboptimal solution.

A **local optimum** si a solution that is optimal witting a small neighbouring set of solutions, which is in contact to the **global optimum** or the optimal solutions among all possible solutions.

Starting positions \Leftrightarrow Motif matrix

given <u>aligned</u> sequences → easy to compute profile matrix

given profile matrix

4

easy to find starting position probabilities

Key idea: Iterative procedure for estimating both, given uncertainty

(learning problem with hidden variables: the starting positions)

Basic Iterative Approach

Given: length parameter *W*, training set of sequences set initial values for **motif**

do

re-estimate starting-positions from motif
 re-estimate motif from starting-positions
 until convergence (change < ε)
 return: motif, starting-positions

Representing Motif M(k,c) and Background B(c)

- Assume motif has fixed width, W
- Motif represented by matrix of probabilities: *M(k,c)* the probability of character *c* in column *k*

$$M = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.1 & 0.5 & 0.2 \\ C & 0.4 & 0.2 & 0.1 \\ G & 0.3 & 0.1 & 0.6 \\ T & 0.2 & 0.2 & 0.1 \end{bmatrix} (\text{-CAG})$$

• Background represented by B(c), frequency of each base

$$B = \begin{bmatrix} A & 0.26 \\ C & 0.24 \\ G & 0.23 \\ T & 0.27 \end{bmatrix}$$
 (near uniform)
(see also: di-nucleotide etc)

Representing the starting position probabilities (Z_{ii})

• the element Z_{ij} of the matrix Z represents the probability that the motif starts in position *j* in sequence *i*

Starting positions (Z_{ij}) \Leftrightarrow Motif matrix M(k,c)

- Z_{ii}: Probability that on sequence i, motif start at position j
- M(k,c): Probability that kth character of motif is letter c
- Computing Z_{ii} matrix from M(k,c) is straightforward
 - At each position, evaluate start probability by multiplying across the matrix
- Three variations for re-computing motif M(k,c) from Z_{ii} matrix
 - Expectation maximization
 - Gibbs sampling
 - Greedy approach

- ➔ All starts weighted by Z_{ii} prob distribution
- ➔ Single start for each seq X_i by sampling Z_{ij}
- ➔ Best start for each seq X_i by maximum Z_{ij}

E-step: Estimate Z_{ii} positions from matrix

Three examples for Greedy, Gibbs Sampling, EM

Calculating $P(X_i)$ when motif position is known

Probability of training sequence X_i, given hypothesized start position j

$$\Pr(X_i \mid Z_{ij} = 1, M, B) = \prod_{k=1}^{j-1} B(X_{i,k}) \underbrace{\prod_{k=j}^{j+W-1} M(k-j+1, X_{i,k})}_{\text{before motif}} \underbrace{\prod_{k=j+W}^{L} B(X_{i,k})}_{\text{motif}} after motif$$

Calculating the Z vector (using M)

- To estimate the starting positions in Z at step t $Z_{ij}^{(t)} = \Pr(Z_{ij} = 1 | X_i, M^{(t)}) = \frac{\Pr(X_i | Z_{ij} = 1, M^{(t)}) \Pr(Z_{ij} = 1)}{\Pr(X_i)}$ (Bayes' rule) evidence
 - At iteration t, calculate Z_{ii}^(t) based on M^(t)
 - We just saw how to calculate $Pr(X_i | Z_{ij}=1, M^{(t)})$
 - To obtain total probability $Pr(X_i)$, sum over all starting positions

$$Z_{ij}^{(t)} = \frac{\Pr(X_i \mid Z_{ij} = 1, M^{(t)}) \Pr(Z_{ij} = 1)}{\sum_{k=1}^{L-W+1} \Pr(X_i \mid Z_{ik} = 1, M^{(t)}) \Pr(Z_{ik} = 1)}$$

Assume uniform priors (motif eq likely to start at any position)

$$X_{i} = \mathbf{G} \ \mathbf{C} \ \mathbf{T} \ \mathbf{G} \ \mathbf{T} \ \mathbf{A} \ \mathbf{G}$$

$$p = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 0.1 \\ 0 & 0.25 & 0.1 & 0.5 & 0.2 \\ 0 & 0.25 & 0.4 & 0.2 & 0.1 \\ 0 & 0.6 & 0.25 & 0.2 & 0.2 \\ 0 & 0.1 & 0.6 \\ 0 & 0.25 & 0.2 & 0.2 & 0.1 \end{bmatrix}$$

$$Z_{i1} = \begin{bmatrix} 0.3 \times 0.2 \times 0.1 \times 0.25 \times$$

 $Z_{i2} = 0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25$

• then normalize so that

$$\sum_{j=1}^{L-W+1} Z_{ij} = 1$$

M-step example: Estimating M(k,c) from Z_{ii}

٠

.

M(k,c) =

$$X_1 = A \ C \ A \ G \ C \ A$$

 $Z_1 = 0.1 \ 0.7 \ 0.1 \ 0.1$

$$X_2 = A G G C A G$$

 $Z_2 = 0.4 0.1 0.1 0.4$

$$X_3 = T C A G T C$$

 $Z_3 = 0.2 0.6 0.1 0.1$

$$M(1, A) = \frac{Z_{1,1} + Z_{1,3} + Z_{2,1} + Z_{3,3} + 1}{Z_{1,1} + Z_{1,2} \dots + Z_{3,3} + Z_{3,4} + 4}$$

Em approach: Avg'em all Gibbs sampling: Sample one Greedy: Select max EM: sum over full probability

$$- n_{1,A} = 0.1 + 0.1 + 0.4 + 0.1 = 0.7$$

$$- n_{1,C} = 0.7 + 0.4 + 0.6 = 1.7$$

$$- n_{1,T} = 0.2 = 0.2$$

· Normalize and add pseudo-counts

$$- M(1,A) = (0.7+1)/(T+4) = 1.7/7=0.24$$

$$- M(1,G) = (0.4+1)/(T+4) = 1.4/7=0.2$$

	1	2	3
Α	0.24	0.39	0.21
С	0.39	0.21	0.18
G	0.2	0.24	0.44
т	0.17	0.16	0.16

The EM Algorithm

• EM converges to a local maximum in the likelihood of the data given the model:

$$\prod_{i} \Pr(X_i \mid M, B)$$

- Deterministic iterations max direction of ascent
- Usually converges in a small number of iterations
- Sensitive to initial starting point (i.e. values in *M*)

P(Seq|Model) Landscape

EM searches for parameters to increase P(seqs|parameters)

Where EM starts can make a big difference