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Artificial life 

Artificial life complements the traditional analytic 
approach of traditional biology with a synthetic 
approach in which, rather than studying biological 
phenomena by taking apart living organisms to see 
how they work, one attempts to put together 
systems that behave like living organisms.   
Alife [...] will result in not only better theoretical 
understanding of the phenomena under study, but 
also in practical applications of biological 
principles in many technological domains.  

Christopher G. Langton 



Discrete dynamical networks 

when using networks to model technological, social, and biological phenomena, 
we can let each node assume a discrete value determining its state  
 
the ensemble of the states of all nodes of the graph, usually called configuration 
of the network, can be interpreted as the state of the whole system under 
analysis 
 
the system can thus synchronously or asynchronously evolve in discrete time 
by letting each node change its state according to a local function (i.e. a function 
those input values are the state of the neighbors of the considered nodes)  



Cellular automata 

proposed by Ulam and von Neumann in the 40s, cellaular automata (CAs) are 

dynamical systems where both space and time are discrete: 

 

ü  a set of cells disposed on a regular grid of dimension d (usually d = 1, 2, 3) 

ü  at each time, each cell can have a state in a  

finite set of possible state 

ü  each cell has a neighborhood 

ü  the dynamics of the system is defined by a  

local transition rule 



Moore 

von Neumann  

a bidimensional binary CA 

each cell may have a state  
in the set S = {0,1} 

the state of a cell at the next 
time step is determined  
by a local transition rule 
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The game of life 

in a bidimensional grid world with Moore’s neighborhood, each cell may 
contain an organism (state 1) or not (state 0) 
 

the evolution of such world is performed by using the following local transition 
rule: 

 

ü  survival: each organism in a cell with two or three organisms in its 
neighborhood stays alive in the next time step 

ü  death: each organism in a cell with four or more organisms in its 
neighborhood dies (for sparsity of resources), as each organism in a cell with 
one or no organism (for isolation) 

ü  birth: each empty cell with three organisms in its neighborhood will contain 
an organism in the next time step 



From gene regulation to models  
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molecular biology 
gene expression is determined by a 
combination of regulatory proteins 

simplified model 
the activation of a gene, that results 
in a protein, influences the 
activation of other genes 



Random Boolean Networks 

n  random boolean networks (RBNs) were proposed by Stuart Kauffman in 1969 
as an extremely simplified model to study the dynamics of networks of gene 
regulation 

network:  
 

ü  a gene regulation network is seen as a set of N nodes, each representing a 
gene 

ü  in the original model, each gene has fixed out-degree (K) 

ü  the K×N edges represent the influence in regulation dynamics of a gene 
on another 



aleatoria:  
 

ü  for each gene, the K outgoing edges are directed to 
other K randomly chosen nodes: the networks 
therefore follows the Erdös-Rényi model with fixed 
out-degree 

ü  the local transition function assigned to each node is 
randomly generated as a function of its in-degree 
and of a probability p of a node to be expressed 

input stato 

off / off on 

off / on off 

on / off off 

on / on off 

boolean:  
 

ü  each gene is modeled as a unit that can be active/activated (expressed 
gene) or not/repressed (unexpressed gene) 

ü  each node can therefore assume two states (binary node)  



Dynamics of random boolean networks 

n  at each discrete time step, each node changes its state according to its local 
transition rule 

n  in the original model, an RBNs determine the state of all its nodes for the 
following discrete time step according to a synchronous scheme 

n  the state or configuration S(t) of an RBN at time t is the set of the states si(t) of 
its singles nodes at time t: 

S(t) = {s1(t), s2(t),..., sN(t)} 
 

n  each configuration S(t) of an RBN has a unique state S(t+1) to which it can 
evolve 

n  an RBN follows therefore a deterministic dynamics 



n  the set of all possible configurations of an RBN coupled with all the 
transitions among them is called state space 

n  the state space of an RBN with N nodes is composed by 2N points (nodes), 
linked by directed edges representing the transitions among states 

n  for an RBN, if the number of nodes N is sufficiently small, it is feasible to 
study in an exhaustive way the topology of its state space 

n  there exist 3 kind of states in a state space: 

ü  gardens of Eden: states that can not be reached from other states 

ü  transients: intermediate states 

ü  attractors: single states (point attractors) or sets of states (cyclic 
attractors) absorbing the dynamics of an RBN 



the transients and gardens of Eden of an attractor are called basin of attraction 



Dynamical regimes 

ordered regime 
 

n  attractors are stable to small 
perturbations of nodes’ states  

n  attractor period lengths scale  
as a small power of the number of 
nodes  N of the RBN 

chaotic regime 
 

n  attractors are sensible to initial 
conditions of the dynamics  

n  attractor period lengths grow 
exponentially with the number of 
nodes  N of the RBN 



in the ordered regime, at the edge of chaos, lies  
the critical regime 

ü  systems in the critical regime show a good 
 compromise between stability to small 
 perturbations and the possibility to evolve 
 (evolvability) 

ü  according to Kauffman hypothesis 
living organisms lie in critical  
regimes 

ü  different point attractors in  
the state space of an RBN are 
interpreted as cell types 

ü  cyclic (or periodic) attractors  
correspond to cellular cycles 

Kc(p) = [2p(1-p)]-1 

⇒ Kc(0.5) = 2 



Kauffman’s main assumptions 
 

1.  the nodes contain a Boolean value and not a graded function 

2.  the connection topology is a random graph 

 
3.  the dynamics of the system is synchronous 

4.  the local transition function is random 

this is an acceptable approximation for threshold phenomena 

this does not agree with nowadays knowledge on biological networks 

this does not agree with experimental data on gene expression in gene 
regulatory networks 

this is not acceptable given recent discoveries on the activation functions 
of genes 



according to recent studies, several genetic regulatory networks show a 
Poissonian distribution of the in-degrees, and a scale-free distribution of the 
out-degrees 

RBNs with scale-free topologies 

Aldana [2003] analysed the 
p h a s e  t r a n s i t i o n  o f 
synchronously updated RBNs 
with scale-free topology as a 
function of the outdegree 
power-law exponent γ 



Tolerance to perturbations 

§  they model transcription errors of gene knock outs 
§  they consist in errors in the output values of nodes’ transition functions 

§  their impact on the dynamics of the system can be measured 

ü  does the system converge to different attractors? 
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Derrida plot 

n  it is possible to study the dynamical regime of an 
 RBN using the Derrida plots 

 

n  a Derrida plot is a two-dimesional graphic where  

 points have: 

ü  as x-coordinate the Hamming distance (HD) between two configurations 
at time t 

HD(Sa(t),Sb(t)) 
 

ü  as y-coordinate the HD between the two configurations at time t+1 
evolved from those considered for the x-coordinate  
  

            HD(Sa(t+1),Sb(t+1)) 



The two case studies 
mouse embryonic stemm cells 

yeast cell cycle 



Update functions 

n  real-life update function often unknown, thus inspired by Stoll et al., we 
propose a new one that : 

ü  uses the extra information and is closer to biological reality 

ü  applies a threshold to regulate the gene expression value 

ü  takes into account the promoting and repressing factors 

ü  reduces the number of possible functions to one per node, making models 
state space exhaustively portrayable 

+/-	
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Additive update functions 

where: 

§  S+ represents the state of an activator gene 

§  S- represents the state of an repressor gene 

§  T is a threshold value that gives different weights to + and - 



Derrida plots of the two case studies 

mouse embryonic stemm cells yeast cell cycle 



Essentially, all models are wrong, but some are 
useful. 

George E.P. Box, 1987 


