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Some words you could hear 

Saddam Hussein 

Kevin Bacon 

pandemic 

Donald Sutherland 

Will Smith 

airports 

Facebook sexual contacts 

World Wide Web 

Internet 

La Divina Commedia 

A/H1N1 

rivers 

telephones 

peer-to-peer 

trains 

Immanuel Kant 

Marc Vidal 

to get to 

viruses 

gene regulation 

metabolic pathways parasites 

epidemiology 

interactions 
bacteria 



But what do these phenomena have in 
common? 



Representing reality 
the seven bridges of Königsberg 

Leonard Euler [1735]:  
“The question is whether a  
person can plan a walk in  
such a way that he will  
cross these bridges once  
but not more than once.  
[...] I formulated the  
following very general  
problem for myself:  
given any configuration  
of the river and the branches into which it may divide, as well as any number of 
bridges, to determine whether or not it is possible to cross each bridge exactly 
once.” 



Euler realized that all problems of this form could be represented by replacing 
area of land by points (called vertices or nodes), and the bridges to and from them 
by arcs (called edges) 

every vertex with an odd number of arcs attached to it has to be either at the 
beginning or at the end of the path: 

a graph has an euler walk if at most two vertices have an odd degree  
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Graphs 

a graph (also called network) is formed by: 
1.  a set of nodes also called vertices 
2.  a set of edges that connect couples  

 of nodes 
 
a graph G  is defined by the couple 〈V,E〉:	


•  the number of vertices is the order of G 
•  the number of edges is the size of G 

 
two nodes are said neighbors if they are linked by an edge 
 
the number of neighbors of a node is called the degree of the node 
 
a sequence of nodes 〈n1,n2,...,nk〉 for which every two nodes ni and ni+1 are 
adjacent is called walk (or path) of length k 

A 1 2 3 4 5 
1 0 1 1 1 0 
2 1 0 1 0 0 
3 1 1 0 1 1 
4 1 0 1 0 1 
5 0 0 1 1 1 
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  edges may have a direction: 
ü  these are called directed or oriented graphs, digraphs 
ü  the adjacency matrix is no longer symmetric 
ü  nodes’ in-degrees and out-degrees are defined 

  finally, edges may have a weight: 
ü  these are called weighted graphs 
ü  the values in the adjacency matrix won’t be binary 
ü  nodes have weighted degrees  

  example: a directed and weighted A 1 2 3 4 5 
1 0 12 47 0 0 
2 0 0 22 0 0 
3 3 0 0 0 7 
4 54 0 1 0 0 
5 0 0 0 1.7 18 

1 
2 

4 

3 

5 

12 
47 
3 

54 1 
1.7 

7 

22 

18 



Some characteristics of graphs 

  the diameter DG of a graph G(V,E) is defined as the maximal distance that 
can be find between any two of its nodes 

  the clustering coefficient Ci of a node i ∈ V in G(V,E) is the probability that 
two neighbors of node i are connected by an edge 

  the clustering coefficient CCG of G(V,E) is the average among the clustering 
coefficient of its nodes 
ü  CCG can be interpreted as the probability that any two nodes in the 

graph sharing a common neighbor are connected 



  the degree distribution PG(k) in a graph G is the law that describes the 
probability that a node has degree k 

  the average degree 〈k〉 in a graph is: 
ü  〈k〉 = 2×|E| / |V| if the graph is undirected 
ü  〈k〉 = |E| / |V| if the graph is directed (i.e. a digraph) 

  the distance distribution PG(d) in a graph G is the law that describes the 
probability that describes the probability that a couple of nodes has distance 
d in G 

  the average path length APLG in a graph G is the average distance between 
each couple of nodes 



  it is sometimes observed that in some cases nodes with high degree tend to 
be connected to nodes with nodes with high degree, while sometimes the 
opposite happens 
 
we talk of nodes correlation: 

ü  in the first case the graph exhibits an assortative mixing or simply an 
assortativity 

ü  in the second case we talk of disassortative mixing  

ü  it is possible to measure the assortativity of a graph with the 
assortative coefficient r, a particular case of the Pearson correlation 
coefficient applied to nodes’ degrees:  

§  when r > 0 we have assortative mixing  
§  when r < 0 we have disassortative mixing  



ü  it is also possible to measure the degree of assortativity by plotting on 
a bidimensional graph the values k of the degrees of the nodes coupled 
with the relative average degrees of their neighbors 〈knn〉 

§  if the values of 〈knn〉 grow when 
 the values of k grow, then we talk 
 of assortative mixing  

 
§  if the values of 〈knn〉 decrease when 

 the values of k decrease, then we talk 
 of disassortative mixing  

 
§  if the values of 〈knn〉 remain constant 

 the values of k grow, then we do not 
have any assortativity 

k 

〈knn〉 

assortative 

〈knn〉 

k 
disassortative 

〈knn〉 

k 
no correlation 



  to define the larger importance of a node with respect to the others in a 
graph, several measures have been proposed 

  the most central node can be: 
ü  the node with the lowest average distance to all other nodes of the 

graph (node centrality)  
ü  the node through which pass most of the shortest path connecting all 

nodes in the graph, that determine the distances between all nodes 
(node betweenness) 

  in a similar way edge betweenness can be defined 

  a cluster is a subset of nodes with more edges connecting each other than 
those connecting them to the rest of the graph 



… in directed and wigthed graphs 

  for directed graphs, the definitions of diameter, average path length, 
assortative e disassortative mixing, node and edge betweenness, clustering 
and community do not change 

  the degree distribution is substituted by the in- and out-degree distributions 

  the average degree 〈k〉 by the average in- and out-degrees, 〈kin〉 and 〈kout〉 

  the clustering coefficient results difficult to  
define 

  in weigthed graphs, the different characteristics are redefined taking into 
account the weigths of the edges	


? 
? 



Regular structures 

until the second half of the XXth century, many physical, social and biological 
phenomena were modeled and analyzed using tools of graph theory: 

most models used regular structures like lattices and trees 



Random structures 

the theory of random graphs was introduced by Pàl Erdös and Alfréd Rényi in 
1959-61 after Erdös discovery that probabilistic methods were often useful in 
tackling problems in graph theory 

an Erdös-Rényi random graph GN,p is constructed connecting each pair of the N 
vertices of the graph with probability p ∈ [0,1] (and non connecting them with 
probability 1-p) 



               property 

    graph 
APL CC DD 

[r ] - ring 
N 
2r 

3(r-1) 
2(2r-1) peak 

[1M ] - torus 
√N 
2r 

3 
7 peak 

ER - GN,p 
ln(N) 
ln(pN) p binomial 

where N is the number of nodes in the graph 



genetic regulation 

 

protein-protein interaction 

 

biochemical reactions 

Swedish sexual 
contact network 

Networks: order vs randomness  

random 	

structures	
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Small-world phenomenon 

n  theory: anyone on the planet can be connected to any other person on the 
planet through a chain of acquaintances that has no more than five 
intermediaries 

n  proposed by F. Karinthy, Hungarian writer, in 1929 

n  proven mathematically by S. Pool and M. Kochen in 1950’s 

n  life-size test by S. Milgram, American sociologist, in 1967 

n  popularized by Guare’s play ‘Six degrees of separation’ in 1990 

n  in 1998, Watts and Strogatz found that real-world networks tend  to be highly 
clustered (like lattices), but have small average path lengths (like random 
graphs) 



Watts-Strogatz small-world graphs 

in 1998, Watts and Strogatz found that real-
world networks tend  to be highly clustered 
(like lattices), but have small average path 
lengths (like random graphs) 
 
they raised the possibility of constructing 
random graphs that have some of the 
important properties of real-world networks 
 



PROPERTIES OF SMALL-WORLD GRAPHS: 

 3(k-1) 
2(2k-1) CC =             (1-β)3 

APL =      f(Nkβ), where   f(x) ~ N 
k 

x          for x >> 1 
log(x)  for x <<1 

DD ~ binomial 



Real-world networks  

real-world networks are mostly found to be very unlike random graphs and most 
small worlds in their degree distributions: 

they are usually referred to as scale-free networks 

far from having a binomial distribution, the degrees of the nodes in most 
networks are highly right-skewed: their distribution has a long tail of values that 
are far above the mean 

from random 
 

to real graphs 

approximation 
 

with a power law 

P(k) ~ k-α 



SOCIAL NETWORKS: 

  business relationship between companies 

  collaboration between film actors 

  email communications 

  co-authorship between academics 

  the patterns of friendship between individuals 

  intermarriages between families 

  telephone calls 

  patterns of sexual contacts 

  business communities 

Genetic Programming collaboration network 

Swedish sexual contact network 



INFORMATION NETWORKS: 

  citations between US patents 

  scientific articles’ citations 

  the World Wide Web 

  peer-to-peer 

  linguistics 

peer to peer network 

articles citation network 



TECHNOLOGICAL NETWORKS: 

  Internet: 

 - autonomous systems level 

 - routers level 

  network of airline routes 

  networks of railways 

  networks of roads 

  river networks 

  telephone networks 

  mail delivery networks 

Amazon river network 

USA flight network 



BIOLOGICAL NETWORKS: 

  food webs of predator-prey  

     interactions between species 

  neural and blood vessels 

  intra-cellular networks: 

 genetic regulation 

         genome 
 

      protein-protein interaction 

        proteome 
 

         biochemical reactions 

                 metabolism 

predator-prey network in a freshwater lake 



Properties of real-world networks  

NETWORK RESILIENCE: 
 

networks vary in their level of resilience in vertex removal, mostly resulting in a 
high robustness with respect to random removals and a low robustness with 
respect to targeted removals  

COMMUNITY STRUCTURES: 
 

most real social networks show 
community structures, i.e. groups of 
nodes that have a high density of edges 
between the group, showing the 
common experience that people do 
divide in groups along lines of interest, 
race, etc 


