Marco Botta Dipartimento di Informatica Università di Torino botta@di.unito.it www.di.unito.it/~botta/didattica/

Multiple Alignment

- Proteins can be classified into families:
 - Common structure.
 - Common function.
 - Common evolutionary origin.
- For a set of sequences belonging to some family
 - Each pair has some differences
 - But, there are some common motifs in almost all sequences of the family
- A multiple alignment carries more information than pairwise alignment

MSA: An E	xampl	е			
1pamA	TDVIYQIFTD	RFSDGNPANN	PTGAAFD	GSC-TNLRLY	CGGDWQGIIN
cdgt_bacli	TDVIYQVFTD	RFLDGNPSNN	PTGAAFD	GTC-SNLKLY	CGGDWQGLVN
amy_thetu	TDVIYQIVTD	RFVDGNTSNN	PTGDLYD	PTH-TSLKKY	FGGDWQGIIN
cdg2_bacma	TDTVYQIVTD	RFVDGNSANN	PTGAAFS	SDH-SNLKLY	FGGDWQGITN
cdg1_bacma	TDVIYQIVTD	RFADGDRTNN	PAGDAFS	GDR-SNLKLY	FGGDWQGIID
cdgt_bacst	SDVVYQIVVD	RFVDGNTSNN	PSGALFS	SGC-TNLRKY	CGGDWQGIIN
cdgt_bacs2	KDVIYQIVTD	RFSDGNPGNN	PSGAIFS	QNC-IDLHKY	CGGDWQGIID
amym_bacst	GDVIYQIIID	RFYDGDTTNN	NPAKSYGLYD	PTK-SKWKMY	WGGDLEGVRQ
cdgt_klepn	KETIYFLFLD	RFSDGDPSNN	AGFNSAT	YDP-NNLKKY	TGGDLRGLIN
amyb_bacpo	KQSIYFIMTD	RFSNGDPSND	NYGG-FN	SN-NSDQRKW	HGGDFQGIIN
amy1_schpo	RRSIYQIITD	RFSLEEGATE	R	IPCDPVRFMY	CGGTWNGIRN
2aaa	TQSIYFLLTD	RFGRTDNSTT		ATCNTGNEIY	CGGSWQGIID
amya_aspor	SQSIYFLLTD	RFARTDGSTT	A	TC-NTADQKY	CGGTWQGIID
amy1_schoc	DQSIYQIVTD	RFARSDGSTT		ADCLVSDRKY	CGGSYKGIID
amy1_sacfi	SQSIYQIVTD	RFARTDGDTS	A	SC-NTEDRLY	CGGSFQGIIK
ydd2_schpo	KQVIYQVLTD	RFALDEDN		FYAKASGNLY	LGGTWKGITR
amy_bacci	TDVIYQIVTD	RFVDGNTANN	PAGSAYD	ATCSTNLKLY	CGGDWQGIMN
1jdc	GDEIILQ	GFHWNVVREA	P		NDWYNILR

Sum of Pairs

• The sum of pairwise distances between all pairs of sequences for some scoring matrix

$$S(m_i) = \sum_{k < l} s(m_i^k, m_i^l)$$

- Not only assumes that alignment of each column is independent, but also each pair of sequences.
 - Each sequence is scored as if descended from *k-1* sequences instead of one common ancestor.

- The Center-Star method is an approximate algorithm based on the Sum-Of-Pairs Score (SP).
- Given as input a set of sequences $S = \{S_1, S_2, ..., S_k\}$, we want to find the multiple alignment that minimizes the SP distance (or maximizes the SP score).

Iterative Alignment

- This approach makes use of pairwise scores in order to add sequences to a multiple alignment.
- It starts by aligning the most similar sequences, according to a given distance metric.
- Then, at each step, it chooses the sequence that os the closest to all sequences already aligned, and add it to the multiple alignment.
- Possibly, new spaces "-" are added to the aligned sequences.

Progressive Alignment

- The basic idea is that the most reliable biological information obtainable from a set of sequences, derives from the alignment of the closest pair of sequences.
- Therefore, every gap "-" that occurs in this alignment must be preserved in the multiple alignment construction process (differently from what happens in iteratve alignment methods).
- Several tools for MSA are based on this approach, among them ClustalW and T-Coffee.

Progressive Alignment: Feng-Doolittle Algorithm

- Compute $\binom{k}{2}$ pairwise alignments and convert their scores in distances.
- Build a phylogenetic tree.
- Align the sequences in the order given by the tree, starting from the closest sequences.

ClustalW

- ClustalW is the most popular tool for multiple alignment of biosequences
- It implements Feng-Doolittle progressive approach.
- Given a set *S* of *n* sequences, ClustalW performs all pairwise alignments between pairs of sequences in *S* and build a distance matrix.

	Seq. A	Seq. B	Seq. C	Seq. D	
Seq. A	0.00	GISE			
Seq. B	0.11	0.00		LA X	
Seq. C	0.32	0.43	0.00	N.W.	00
Seq. D	0.17	0.18	0.57	0.00	

ClustalW		
 This is a sam The * symbol at the bottom of a column means 100% match The : symbol means high similarity (75%). The . symbol means medium similarity (50%-75%). 	Drosophila Mus Xenopus Gallus Homo Bos Zantedeschia Cavia Xepergillus Caenorhaditis Onchocerca Saccharomyces Callinectes Rattus Equus Charyddis Ch	Of ClustelW.

SAGA

- One of the first euristic tools consistency-based was SAGA (1996).
- SAGA uses COFFEE (Consistency-based Objective Function For alignmEnt Evaluation) objective function, that reflect the consistency level between a multiple alignment and a library of pairwise alignment of the same set of sequences.
- The COFFEE-Score is optimized by means of a genetic algorithm.
- Even though SAGA is able to produce interesting results, the genetic algorithm approach is quite slow.

Scoring Functions and Alignment Evaluation

- There are a number of scoring functions besides the Sum-Of-Pairs, we consider two of them:
 - Entropy
 - Circular-Sum
- The *right* choice of the objective function is very important in the design of a good alignment algorithm
- Unluckily, there are no universal functions that fully capture the biological meaning of the alignment

												•	C	G	т	-
	//		Ģ	7							1	2/3	0	0	0	- 1/3
											2	0	3/3	0	0	0
2	A	С	А	_	_/	G	~ ~	Т	С	А	3	2/3	0	0	0	1/3
j	A	C	Υ.	Ξ	Т	G	C	т	_	А	4	1/3	0	0	0	2/3
	_	С	А	A	т	G	С	Т	G	А	5	0	0	0	2/3	1/3
									1		6	0	0	3/3	0	0
									1	2	7	0	2/3	0	0	1/3
											8	0	0	0	3/3	0
											9	0	1/3	1/3	0	1/3
											10	3/3	0	0	0	0

Alignment of two profiles

- Let $P_1 = (p_{ij})$ and $P_2 = (p_{ij})$ i=1...l and j=1...| Σ |+1 two profiles.
- The scoring function is the following:

$$\begin{split} \sigma_{pp} &: \{1, 2, ..., l\} \times \{1, 2, ..., l\} \to \Re \\ \sigma_{pp}(i, j) &= \sum_{k=1}^{|\Sigma|+1} f\left(p_{i,k}, p_{j,k}^{*}\right) \end{split}$$

• where *f* is a function that assigns a score to pairs of columns according to the frequency of symbols in the alphabet.

<section-header><section-header>

