
1

Sequence Alignment

Marco Botta
Dipartimento di Informatica

Università di Torino
botta@di.unito.it

www.di.unito.it/~botta/didattica/

1

Sequence Comparison

Much of bioinformatics involves sequences
• DNA sequences
• RNA sequences
• Protein sequences
We can think of these sequences as strings of

letters
• DNA & RNA: alphabet of 4 letters
• Protein: alphabet of 20 letters

2

2

Sequence Comparison (cont)

• Finding similarity between sequences is
important for many biological questions

For example:
• Find genes/proteins with common origin

– Allows to predict function & structure
• Locate common subsequences in

genes/proteins
– Identify common “motifs”

• Locate sequences that might overlap
– Help in sequence assembly

3

Sequence Alignment

Input: two sequences over the same
alphabet

Output: an alignment of the two
sequences

Example:
• GCGCATGGATTGAGCGA
• TGCGCCATTGATGACCA

A possible alignment:
-GCGC-ATGGATTGAGCGA

TGCGCCATTGAT-GACC-A

4

3

Alignments

-GCGC-ATGGATTGAGCGA
TGCGCCATTGAT-GACC-A

Three elements:
• Perfect matches
• Mismatches
• Insertions & deletions (indel)

5

Choosing Alignments

There are many possible alignments
For example, compare:

-GCGC-ATGGATTGAGCGA
TGCGCCATTGAT-GACC-A

to
------GCGCATGGATTGAGCGA
TGCGCC----ATTGATGACCA--

Which one is better?

6

4

Scoring Alignments

Rough intuition:
• Similar sequences evolved from a

common ancestor
• Evolution changed the sequences from

this ancestral sequence by mutations:
– Replacements: one letter replaced by

another
– Deletion: deletion of a letter
– Insertion: insertion of a letter

• Scoring of sequence similarity should
examine how many operations took
place

7

Simple Scoring Rule

Score each position independently:
• Match: +1
• Mismatch: -1
• Indel -2
Score of an alignment is sum of positional

scores

8

5

Example

Example:
-GCGC-ATGGATTGAGCGA

TGCGCCATTGAT-GACC-A
Score: (+1x13) + (-1x2) + (-2x4) = 3

------GCGCATGGATTGAGCGA

TGCGCC----ATTGATGACCA--
Score: (+1x5) + (-1x6) + (-2x12) = -25

9

More General Scores

• The choice of +1,-1, and -2 scores was quite
arbitrary

• Depending on the context, some changes are
more plausible than others
– Exchange of an amino-acid by one with similar

properties (size, charge, etc.)
vs.
– Exchange of an amino-acid by one with opposite

properties

10

6

Additive Scoring Rules

• We define a scoring function by specifying a
function

– σ(x,y) is the score of replacing x by y
– σ(x,-) is the score of deleting x
– σ(-,x) is the score of inserting x

• The score of an alignment is the sum of
position scores

11

},,,{
}){(}){(:

tgca=Α
ℜ−∪Α×−∪Α aσ

∑ =

n

i
i yx

1
),(σ

Edit Distance

• The edit distance between two sequences is
the “cost” of the “cheapest” set of edit
operations needed to transform one
sequence into the other

• Computing edit distance between two
sequences almost equivalent to finding the
alignment that minimizes the distance

12

nment)score(aligmax),d(& of alignment 21 ss21 ss =

7

Computing Edit Distance

• How can we compute the edit distance??
– If |s| = n and |t| = m, there are more than

alignments

• The additive form of the score allows to
perform dynamic programming to
compute edit distance efficiently

13

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
m

nm

• (m+n)(m+n-1)(m+n-2)…1
• m(m-1)(m-2)…(m-n).. n(n-1)(n-2)…1

14

8

Recursive Argument

• Suppose we have two sequences:
s[1..n+1] and t[1..m+1]

The best alignment must be in one of
three cases:
1. Last position is (s[n+1],t[m +1])
2. Last position is (s[n +1],-)
3. Last position is (-, t[m +1])

15

])[],[(
])..[],..,[(])..[],..[(
1mt1ns

m1tn1sd1m1t1n1sd
++

+=++

σ

Recursive Argument

• Suppose we have two sequences:
s[1..n+1] and t[1..m+1]

The best alignment must be in one of
three cases:
1. Last position is (s[n+1],t[m +1])
2. Last position is (s[n +1],-)
3. Last position is (-, t[m +1])

16

)],[(
])..[],..,[(])..[],..[(

−+

++=++

1ns
1m1tn1sd1m1t1n1sd

σ

9

Recursive Argument

• Suppose we have two sequences:
s[1..n+1] and t[1..m+1]

The best alignment must be in one of
three cases:
1. Last position is (s[n+1],t[m +1])
2. Last position is (s[n +1],-)
3. Last position is (-, t[m +1])

17

])1[,(
])..1[],1..,1[(])1..1[],1..1[(

+−
++=++

mt
mtnsdmtnsd

σ

Recursive Argument

Define the notation:

• Using the recursive argument, we get the
following recurrence for V:

18

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−++
−+++
+++

=++
])[,(],[
)],[(],[

])[],[(],[
max],[

1jtj1iV
1is1jiV

1jt1isjiV
1j1iV

σ
σ

σ

])..[],..[(],[j1ti1sdjiV =

10

Recursive Argument

• Of course, we also need to handle the base
cases in the recursion:

19

])[,(],[],[
)],[(],[],[

],[

1jtj0V1j0V
1is0iV01iV

000V

+−+=+

−++=+

=

σ
σ

Dynamic Programming Algorithm

20

We fill the matrix using the recurrence rule

0
A
1

G
2

C
3

 0

A 1

A 2

A 3

C 4

11

Dynamic Programming Algorithm

0
A
1

G
2

C
3

 0 0 -2 -4 -6

A 1 -2 1 -1 -3

A 2 -4 -1 0 -2

A 3 -6 -3 -2 -1

C 4 -8 -5 -4 -1

21

Conclusion: d(AAAC,AGC) = -1

Reconstructing the Best Alignment

• To reconstruct the
best alignment, we
record which case
in the recursive
rule maximized the
score

22

0
A
1

G
2

C
3

 0 0 -2 -4 -6

A 1 -2 1 -1 -3

A 2 -4 -1 0 -2

A 3 -6 -3 -2 -1

C 4 -8 -5 -4 -1

12

Reconstructing the Best Alignment

• We now trace back
the path that
corresponds to the
best alignment

23

0
A
1

G
2

C
3

 0 0 -2 -4 -6

A 1 -2 1 -1 -3

A 2 -4 -1 0 -2

A 3 -6 -3 -2 -1

C 4 -8 -5 -4 -1

AAAC
AG-C

Reconstructing the Best Alignment

• Sometimes, more than
one alignment has the
best score

24

0
A
1

G
2

C
3

 0 0 -2 -4 -6

A 1 -2 1 -1 -3

A 2 -4 -1 0 -2

A 3 -6 -3 -2 -1

C 4 -8 -5 -4 -1

AAAC
A-GC

13

Complexity

Space: O(mn)
Time: O(mn)
• Filling the matrix O(mn)
• Backtrace O(m+n)

25

Local Alignment

Consider now a different question:
• Can we find similar substring of s and t ?
• Formally, given s[1..n] and t[1..m] find i,j,k,

and l such that d(s[i..j],t[k..l]) is maximal

26

14

Local Alignment

• As before, we use dynamic programming
• We now want to setV[i,j] to record the best

alignment of a suffix of s[1..i] and a suffix of
t[1..j]

• How should we change the recurrence rule?

27

Local Alignment

New option:
• We can start a new match instead of

extend previous alignment

28

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−++
−+++
+++

=++

0
1jtj1iV

1is1jiV
1jt1isjiV

1j1iV
])[,(],[
)],[(],[

])[],[(],[
max],[

σ
σ

σ

Alignment of empty suffixes

15

Local Alignment

• Again, we also need to handle the base
cases in the recursion:

29

]))[,(],[,max(],[
))],[(],[,max(],[

],[

1jtj0V01j0V
1is0iV001iV

000V

+−+=+

−++=+

=

σ
σ

Local Alignment Example
30

0
A
1

T
2

C
3

T
4

A
5

A
6

 0
T 1

A 2
A 3

T 4

A 5

s = TAATA
t = ATCTAA

16

Local Alignment Example
31

0
T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 0 0 0 2 0 1

A 5 0 0 1 0 0 3 1

s = TAATA
t = TACTAA

Local Alignment Example
32

0
T
1

A
2

C
3

T
4

A
5

A
6

0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 1 0 0 2 0 1

A 5 0 0 2 0 0 3 1

s = TAATA
t = TACTAA

17

Local Alignment Example
33

0
T
1

A
2

C
3

T
4

A
5

A
6

0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 1 0 0 2 0 1

A 5 0 0 2 0 0 3 1

s = TAATA
t = TACTAA

Sequence Alignment

We have seen two variants of sequence
alignment:

• Global alignment
• Local alignment
Other variants:
• Finding best overlap (exercise)

All are based on the same basic idea of
dynamic programming

34

18

Alignment with Gaps
35

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT--------GTTCATGACGCA

I

II

Gaps

• Both alignments have the same number of
matches and spaces but…alignment II seems
better.

• Definition: A gap is any maximal,
consecutive run of spaces in a single string.

• The length of the gap will be the number of
spaces in it.

• Example I has 11 gaps while example II has
only 2 gaps.

• Idea: develop alignment scores that take
gaps (not spaces) into account.

36

19

Biological Motivation

• Number of mutational events
– A single gap - due to single event that

removed a number of residues.
– Each separate gap - due to distinct

independent events.
• Protein structure

– Protein secondary structure consists of
alpha helixes, beta sheets and loops

– Loops of varying size can lead to very
similar structure.

37

Biological Motivation
38

20

cDNA matching

• cDNA - is the sequence after splicing
and editing, after the introns have been
removed.

• We expect regions of high similarity
separated by long gaps.

• These gaps correspond to the introns
removed by splicing

39

Gap Penalty Models

• Constant Model
– Gives each gap a constant weight, spaces

are free
– Maximize:
– Time
– Works well for cDNA matching

• Affine Model
– There is a penalty for starting a gap and a

penalty for each space extending it.
– A single gap contributes
– Maximize:
– Time
– Most widely used

40

gapsWTS gii #),('' ×+∑σ
)(nmO

spacesgapss WWTS sgii ##),('' ×+×+∑
)(nmO

WW sg q+

21

Gap Penalty Models

• Convex model
– Each extra space contributes less penalty
– Gap function is convex in length
– Example
– Time
– Better model of biology

• General model
– The weight of a gap is some arbitrary
– Time

41

qWW sg log+

)log(mnmO

)(qw
)(22 mnnmO +

Example Revised
42

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT--------GTTCATGACGCA

I

II

22

Indel model
43

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-
I

AACAATTAAGACTACGTTCATGAC---

AACAATT--------GTTCATGACGCA
II

Scoring Parameters:
Match: +1
indel: -2

-6

-6

Constant model
44

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-
I

AACAATTAAGACTACGTTCATGAC---

AACAATT--------GTTCATGACGCA
II

Scoring Parameters:
Match: +1
open gap: -2

-6

12

23

Affine model
45

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-
I

AACAATTAAGACTACGTTCATGAC---

AACAATT--------GTTCATGACGCA
II

Scoring Parameters:
Match: +1
Open Gap: -2
Extend Gap:-1

-17

1

Convex model
46

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-
I

AACAATTAAGACTACGTTCATGAC---

AACAATT--------GTTCATGACGCA
II

Scoring Parameters:
Match: +1
Open Gap: -2
Gap Length: -logn

-6

~7

24

Affine Weight Model

• We divide the possible alignments of
the prefixes S1..i and T1..j into 3 types:

47

S_______i
T_______j

S______i------
T____________j

S____________i
T_______j-----

A(i,j)

B(i,j)

C(i,j)

Affine Weight Model
48

Recurrence relations

⎪
⎩

⎪
⎨

⎧

+−−
+−−
+−−

=
),()1,1(
),()1,1(
),()1,1(

max),(
jisjiC
jisjiB
jisjiA

jiA

⎩
⎨
⎧

+−−

++−−
=

s

sg

WjiB

WWjiA
jiB

)1,1(

)1,1(
max),(

⎩
⎨
⎧

+−−

++−−
=

s

sg

WjiC

WWjiA
jiC

)1,1(

)1,1(
max),(

25

Affine Weight Model
49

Initial Conditions:

sg

sg

jWWiCjA

iWWiBiA

+==

+==

)0,(),0(

)0,()0,(

Complexity
•Time: O(nm) we compute 3 matrices.
•Space: O(nm)

Optimal alignment :
)},(),,(),,(max{),(mnCmnBmnAmnV =

Affine Weight Model
50

This model has a natural explanation as a
finite state automata.

A

B

C

S(i,j)

Ws

Ws

Wg+Ws

S(i,j)

S(i,j)

Wg+Ws

26

Alignment in Real Life

• One of the major uses of alignments is to
find sequences in a “database”

• Such collections contain massive number of
sequences (order of 106)

• Finding homologies in these databases with
dynamic programming can take too long

51

Heuristic Search

• Instead, most searches relay on heuristic
procedures

• These are not guaranteed to find the best
match

• Sometimes, they will completely miss a high-
scoring match

We now describe the main ideas used by
some of these procedures
– Actual implementations often contain additional tricks and

hacks

52

27

Basic Intuition

• Almost all heuristic search procedure are
based on the observation that real-life
matches often contain long strings with gap-
less matches

• These heuristic try to find significant gap-less
matches and then extend them

53

Banded DP

• Suppose that we have two strings s[1..n] and
t[1..m] such that n≈m

• If the optimal alignment of s and t has few
gaps, then path of the alignment will be close
to diagonal

54

s

t

28

Banded DP

• To find such a path, it
suffices to search in a
diagonal region of the matrix

• If the diagonal band has
width k, then the dynamic
programming step takes
O(kn)

• Much faster than O(n2) of
standard DP

55

s

t k

Banded DP

Problem:
• If we know that t[i..j] matches the query s,

then we can use banded DP to evaluate
quality of the match

• However, we do not know this apriori!

How do we select which sequences to align
using banded DP?

56

29

FASTA Overview

Main idea:
• Find potential diagonals & evaluate them
• Suppose that we have a relatively long gap-

less match
AGCGCCATGGATTGAGCGA
TGCGACATTGATCGACCTA

• Can we find “clues” that will let us find it
quickly?

57

Signature of a Match

Assumption: good matches contain
several “patches” of perfect matches

AGCGCCATGGATTGAGCGA
TGCGACATTGATCGACCTA

Since this is a gap-less alignment,
all perfect match regions
should be on one diagonal

58

s

t

30

FASTA

• Given s and t, and a parameter k
• Find all pairs (i,j) such that

s[i..i+k]=t[j..j+k]
• Locate sets of pairs that are on the same

diagonal
– By sorting according to i-j

• Compute score for the diagonal that contain
all of these pairs

59

s

t

FASTA

Postprocessing steps:
– Find highest scoring diagonal matches
– Combine these to potential gapped matches
– Run banded DP on the region containing

these combinations

• Most applications of FASTA use very
small k
(2 for proteins, and 4-6 for DNA)

60

31

FASTA Output

SCORES Init1: 1201 Initn: 1844 Opt: 1915
Smith-Waterman score: 1915; 59.3% identity in 496 aa overlap

10 20 30 40
A41264 MADKKKITASLIYAVSVAAIGSLQFGYNTGVINAPEKIIQAFYNRTL

::::|::|: || |::|||||||| ||||||:|:|: ||:|
A49158 MPSGFQQIGSEDGEPPQQRVTGTLVLAVFSAVLGSLQFGYNIGVINAPQKVIEQSYNETW

10 20 30 40 50 60

50 60 70 80 90 100
A41264 SQRSG----ETISPELLTSLWSLSVAIFSVGGMIGSFSVSLFVNRFGRRNSMLLVNVLAF

|:| :| | ||:||:||||||||||||:|| :::: : :||: :||: ||||
A49158 LGRQGPEGPSSIPPGTLTTLWALSVAIFSVGGMISSFLIGIISQWLGRKRAMLVNNVLAV

70 80 90 100 110 120

.

61

BLAST Overview

• BLAST uses similar intuition
• It relies on high scoring matches rather

than exact matches
• It is designed to find alignments of a target

string s against large databases

62

32

High-Scoring Pair

• Given parameters: length k, and thresholdT
• Two strings s and t of length k are a high

scoring pair (HSP) if d(s,t) > T

• Given a query s[1..n], BLAST construct all
words w, such that w is an HSP with a k-
substring of s
– Note that not all substrings of s are HSPs!

• These words serve as seeds for finding
longer matches

63

High Scoring Pair

Query Sequence M V G A S T P R Q G A I L V R W S
P R Q
P R E
P K Q
P K E
H R Q
H T Q
A A A

Below
Threshold

Neighborhood
Words

Word

33

Finding Potential Matches

We can locate seed words in a large database
in a single pass

• Construct a FSA that recognizes seed words
• Using hashing techniques to locate matching

words

65

Extending Potential Matches

• Once a seed is found, BLAST attempts to find
a local alignment that extends the seed

• Seeds on the same diagonal
are combined (as in FASTA)

66

s

t

34

BLAST programs

• BLASTN - Nucleotide query searching a
nucleotide database.

• BLASTP - Protein query searching a protein
database.

• BLASTX - Translated nucleotide query
sequence (6 frames) searching a protein
database.

• TBLASTN - Protein query searching a
translated nucleotide (6 frames) database.

• TBLASTX - Translated nucleotide query (6
frames) searching a translated nucleotide
(6 frames) database

67

BLAST Search
68

35

BLAST Output

• List of hits
– Database accession codes, name, description.
– Score in bits (Usually >30 bits is significant)
– Expectation value E()

• For each hit
– A header including hit name, description,

length
– Each hit may contain several HSPs
– Score and expectation value

– how many identical residues
– how many residues contributing positively to the

score

• The local alignment itself

69

BLAST Output
70

36

BLAST Output
71

BLAST Output
72

37

What do we use

• Originally Blast did not allow gaps.
– Now people use gapped-Blast
– Gapped blast joins different diagonals.

• For proteins Blast is superior
• For nucleotides Fasta is better.

73

Protein Alignments

• As we saw, there are many possible
alignments, often with the same score

• We are interested in biologically meaningful
alignments

• The resulting alignment depends on the
score assigned to pairs of amminoacids and
on the indels and gap penalty functions

86

38

Amminoacid Similarity

• Amminoacids can
be classified
according to their
chemical and
physical
properties.

• When comparing
them, one must
take into account
these properties

Scoring Matrices

• Scoring Matrices assign a numerical
score to any possible pairs of
amminoacids, accounting for their
chemical and physical properties

• Amminoacid Substitution Matrices or
Symbol Comparison Tables

• There are tables for protein comparison
and for nucleic acid comparison

• A huge number of such matrices are
available, each based on different
substitution models

88

39

PAM Matrices

• PAM (Point Accepted Mutations) matrices were
developed at the end of the ‘70s by analysing
the mutations of amminoacid sequences of
proteins superfamilies tightly related.

• They noticed that these mutations were not at
all random.

• Some substitutions occured more often than
others, probably because they do not alter the
function and/or the structure of a protein.

Unit and PAM Matrices

• We use PAM units to measure the distance
among amminoacid sequences.

• Two sequences S1 and S2 are 1 PAM unit
apart if S1 can be transformed into S2 with 1
single mutation every 100 amminoacids, on
average.

• In general, an amminoacid could mutate
many times, eventually returning to its
original value; therefore, two sequences that
are 1 PAM apart, may be different less than
1%.

40

PAM Matrices

• According to this model, amminoacidic
substitutions observed in a given period of
time, can be extrapolated for longer periods

• In the computation, a mutation in a given
site is considered independent of previous
mutational events in the same site

91

92

Specie A A W T V A S A V R T S I

Specie B A Y T V A A A V R T S I

Specie C A W T V A A A V L T S I

A B C

L→ R

W→ Y

41

PAM Matrices Computation: An Example

• pi = ai/atot frequency of amminoacid i

• fij = n(ai→aj) number of mutations ai→aj

• fi = ∑j fij number of mutations of ai

• f = ∑i fi total number of mutations

93

PAM Matrices Computation: An Example

• If mi = fi /100·f pi is the probability of mutation of ai,
then

Mii = 1 – mi
is the probability of conservation of ai

• The probability of a mutation ai→aj is

Mij = (fij / fi) mi

94

42

PAM Matrices Computation: An Example

• Matrix Mij so computed is a transition matrix
• In general, to compute the probabilities for k

evolutionary steps:

Mij
k

95

PAM Matrices

• There are different types of PAM Matrices, each
one is used to compare 2 squences that are a
given number of PAM units apart.

• For instance, PAM250 can be used to compare
sequences that are 250 PAM units apart.

• An entry (i,j) of the PAM250 matrix contains the
score of the pair of amminoacids (Ai,Aj); such
score is proportional to the expected frequency
of the substitution of Ai with Aj in two sequences
that are 250 PAM units apart.

43

97

BLOSUM Matrices (Henikoff &
Henikoff, 1992)
• Blocks Amino Acid Substitution Matrices =

BLOSUM
• Based on the amminoacid substitutions

observed in ~2000 conserved blocks of
sequences.

• These blocks are extracted from 500 protein
families

• Segments belonging to each block are
clustered according to their similarity. Every
cluster is considered as a single sequence
and the number of mutations in each column
is computed

98

44

Example of BLOSUM Matrix
computation

...A...

...A...

...A...

...A...

...A...

...S...

...A...

...A...

...A...

...A... • 9 A and 1 S
• 36 A→A (fAA) and 9

A→S (fAS)
• 210 possible pairs

of amminoacids
• The frequency of

A→A is qAA = fAA/(fAA
+ fAS) = 0.8

• The frequency of
A→S is qAS = fAS/(fAA
+ fAS) = 0.2

99

Example of BLOSUM Matrix
computation
• The expected frequency that A is involved in

a mutation is pA = (qAA + qAS/2) = 0.9
• The expected frequency that S is involved in

a mutation is pS = (qAS/2) = 0.1
• The expected frequency of a pair AA is eAA =

pA
2 = 0.81

• The expected frequency of a pair AS is eAS = 2
pA pS = 0.18

100

45

Example of BLOSUM Matrix
computation
• The score for AA in the matrix is qAA/eAA = 0,99

and for AS is qAS/eAS = 1.11
• The values are converted in bits:

sAA = log2(qAA/eAA) = -0.04
sAS = log2(qAS/eAS) = 0,30

101

BLOSUM Matrix computation

• From every cluster a matrix is computed
• For instance, a cluster that contains

sequences with >60% identities results in a
matrix called BLOSUM60

• The most frequently used matrix is
BLOSUM62

102

46

103

The Hazard of Large Databases

• Define
• This is the probability that two unrelated

sequences will match with score > ε by
chance

• Assuming that they are independent of each
other, and all are unrelated to s, we have

104

)|),((UtsdPp εε >=

ε
εε NpN

t eptsdP −−≈−−=> 1)1(1)),((max

47

Local Matching

• Question: Which local alignment query is
expected to give a higher score:
– To a short sequence
– To a long sequence?

• A local match can begin at any of the nm
entries in the DP matrix.

• The score is the optimal of all these
starting points.

• If all starting points were independent we
would need to calculate the probability of
attaining such a score in nm trails.

105

Score Significance-Fasta

• How meaningful is a score?
• Calculate distribution of scores and

related scores

• Under reasonable assumptions the
scores for un-gapped alignment behave
according to the Extreme Value
Distribution

106

48

Extreme Value Distribution (BLAST)

• We ask the following questions: Given a
database of size m and a sequence of size n

• What is the expected number of hits with
score at least S? This number is called an E-
score

• Notice this is a Poisson distribution.
• K corrects for the dependencies
• λ depends on the scoring matrix
• Doubling length of sequence doubles expectation
• Doubling score causes E to decrease exponentially

107

SKmneSE λ−=)(

Blast P-value

• Recall Poisson distribution:
– Probability of finding no hits with a score >= S

– Therefore probability of finding at least one hit
with score >= S is

– This is called the P-value.

108

Ee−

Ee−−1

