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Sequence Comparison

Much of bioinformatics involves sequences
= DNA sequences

= RNA sequences

* Protein sequences

We can think of these sequences as strings of
letters

e DNA & RNA: alphabet of 4 letters
* Protein: alphabet of 20 letters




Sequence Comparison (cont)

» Finding similarity between sequences is
important for many biological questions

For example:

= Find genes/proteins with common origin
— Allows to predict function & structure

e Locate common subsequences in
genes/proteins
— ldentify common “motifs”

e Locate sequences that might overlap
— Help in sequence assembly

Sequence Alignment

Input: two sequences over the same
alphabet

Output: an alignment of the two
sequences

Example:
= GCGCATGGATTGAGCGA

= TGCGCCATTGATGACCA

A possible alignment:
-GCGC-ATGGATTGAGCGA

TGCGCCATTGAT-GACC-A




IgCGCIﬁTIEATIgAIEIﬁ
CGCBATIEGATEGA

Three elements:

* Perfect matches

= Mismatches <
* Insertions & deletions (inded=—

Choosing Alignments

There are many possible alignments

For example, compare:
-GCGC-ATGGATTGAGCGA
TGCGCCATTGAT-GACC-A

to
—————— GCGCATGGATTGAGCGA
TGCGCC----ATTGATGACCA--
Which one is better?




Scoring Alignments

Rough intuition:

« Similar sequences evolved from a
common ancestor

» Evolution changed the sequences from
this ancestral sequence by mutations:

— Replacements: one letter replaced by
another

— Deletion: deletion of a letter
— Insertion: insertion of a letter

e Scoring of sequence similarity should
examine how many operations took
place

Simple Scoring Rule

Score each position independently:

e Match: +1
e Mismatch: -1
« |Indel -2

Score of an alignment is sum of positional
scores




Example:

IECGCI:TIEATIGAICIi
CGCRBATIEGATRGALC

Score: (+1x13) + (-1x2) + (-2x4) = 3

THEGAT

Score: (+1x5) + (-1x6) + (-2x12) = -25

More General Scores

= The choice of +1,-1, and -2 scores was quite
arbitrary

» Depending on the context, some changes are
more plausible than others

— Exchange of an amino-acid by one with similar
properties (size, charge, etc.)

VS.

— Exchange of an amino-acid by one with opposite
properties




Additive Scoring Rules

= We define a scoring function by specifying a
function
o (AV{}PHx(Au{-D)—R
A={a,c,qg,t}
- o(x,y)is the score of replacing x by y
- o(x,-)is the score of deleting x
- o(-,x)is the score of inserting x

» The score of an alignment is the sum of
position scores

Zin:lO'l(X, Y)

Edit Distance

e The edit distance between two sequences is
the “cost” of the “cheapest” set of edit
operations needed to transform one
sequence into the other

d(s,,s,) = max score(alignment)

alignment of s,4&s,,

e« Computing edit distance between two
sequences almost equivalent to finding the
alignment that minimizes the distance




Computing Edit Distance

< How can we compute the edit distance??

—If |s] = nand || = m, there are more than (m;”J
alignments

» The additive form of the score allows to
perform dynamic programming to
compute edit distance efficiently

e (m+n)(m+n-1)(m+n-2)...1
e m(m-1)(m-2)...(m-n).. n(n-1)(n-2)...1




Recursive Argument

e Suppose we have two sequences:
s/l.n+1]and t/1.m+1]
The best alignment must be in one of
three cases:
= 1. Last position is (s/n+1]t/m +1])
2. Last position is (s/n +1],-)
3. Last position is (-, #/m +1])

d(s[in+11,tH[L.m+1])=d(s[1.,n],HI.m])+
o(s[n+1],H{m+ 1])

Recursive Argument

e Suppose we have two sequences:
s/l.n+1]and t/1.m+1]
The best alignment must be in one of
three cases:
1. Last position is (s/n+1]t/m +1])
=P 2. Last position is (s/n +1],-)
3. Last position is (-, #/m +1])

d(s[in+11,H{L.m+1)=d(s[L.n],HI.m~+1])+
o(s[n+1],-)




Recursive Argument

e Suppose we have two sequences:
s/l.n+1]and t/1.m+1]

The best alignment must be in one of
three cases:
1. Last position is (s/n+1]t/m +1])
2. Last position is (s/n +1],-)
==p 3. Last position is (-, #/m +1])

d(s[l..n+1],t[1.m+1]) =d(s[1..,n+1],t[1..m]) +
o(—t[m+1])

Recursive Argument

Define the notation:

VIi.j1=d(s[1.71H1.4])

= Using the recursive argument, we get the
following recurrence for V-

VIi,j1+o(sli + 11,/ + 1])
VIi+1,j+1]=max|V[/,j+1]+o(s[/+1]-)
VIi+1,j1+o(-1H/j+1])




Recursive Argument

e Of course, we also need to handle the base
cases in the recursion:

Vi0o0o]l=0
VIi+1,01=V[i0]+0o(s[/+1]-)
VIO.j+11=VI0,j]1+o(-1j +1])

A G C

0 1 2N
0
Al
A2
A3
c4

We fill the matrix using the recurrence rule
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Dynamic Programming Algorithm

A G C
0 1 2 3

Al
A2|-
A3l

O

Conclusion: d(AAAC,AGC) = -1

Reconstructing the Best Alignment

e To reconstruct the A G C
best alignment, we c 1 2 3
record which case 0 ?:-2‘--4*-6
in the recursive A1ll-2 1e-1<-3
rule maximized the A t4\ 11\0 x\ :
score P Taulin

A3|6 -3 -2 -1
t Xt
Cul8 Bgd 4

11



Reconstructing the Best Alignment

» We now trace back
the path that
corresponds to the
best alignment

AAAC
AG-C

A G C
0O 1 2 3

0
Al
A2
A3
C4

0—-2—4+-6
1=

g i
AN AN
4 -1 0+«-2

1\1\5\
6 -3 -2 -1
t Xt
s8N 4 o-F

Reconstructing the Best Alignment

e Sometimes, more than
one alignment has the
best score

AAAC
A-GC

A G C

0O 1 2 3

0| 0+-2+-4+-6

tx

Al -2 l«-1«<-3
ttN X

A2|-4 -1 0<«-2
tNtNtX

A3/-6 -3 -2 -1
t etxtx

C4|-8 & -4--1
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Complexity

Space: O(mn)

Time: O(mn)

= Filling the matrix O(mn)
= Backtrace O(m+n)

Local Alignment

Consider now a different question:
e Can we find similar substring of sand #?

= Formally, given s/Z.nJand #/1.mjfind /jA,
and /such that d(s/i.j] 1/k./]) is maximal

13



Local Alignment

e As before, we use dynamic programming

= We now want to set /s, j/to record the best

alignment of a suffix of s/Z./]and a suffix of
t/1./]

< How should we change the recurrence rule?

Local Alignment

New option:

e \WWe can start a new match instead of
extend previous alignment

VIi,j1+o(sli + 11,/ + 1])
VIi+1,j+1]1=max|V[/,j+1]+o(s[/+1]-)
VIi+1,j1+o(- 1/ +1])

0
mf empty suffixes ]




Local Alignment

e Again, we also need to handle the base
cases in the recursion:

V[i00]=0
VIi+10]1=max(0V[/,0]+o(s[/+1],-))
V[0, j+1]=max(0V]0, j1+ o(- 1t/ +1])

Local Alignment Example

A
1

N —
w O
IR
o >
o >

s=TAATA 0
= ATCTAA .
A2
A3
T4

AS
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Local Alignment Example

R A A
) AT A 0 1 2 3 4 5 6
#=TACTAA 00,0 0 0,0 0 0
willg"Sali0 0 1 0.0
N ~ X
A2/0 0 2 0 0 2 1
SR
A3(0 0 1 1 0 1\@
n4flod oGNS o 1
N N
AS5|0 0 2 0 0 3«1

Sequence Alignment

We have seen two variants of sequence
alignment:

e Global alignment

e Local alignment

Other variants:

» Finding best overlap (exercise)

All are based on the same basic idea of
dynamic programming
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Alignment with Gaps

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT——————-- GTTCATGACGCA

« Both alignments have the same number of
matches and spaces but...alignment Il seems
better.

Definition: A gap is any maximal,
consecutive run of spaces in a single string.
The length of the gap will be the number of
spaces in it.

Example | has 11 gaps while example Il has
only 2 gaps.

Idea: develop alignment scores that take
gaps (not spaces) into account.

18



Biological Motivation

e Number of mutational events

— A single gap - due to single event that
removed a number of residues.

— Each separate gap - due to distinct
independent events.
e Protein structure

— Protein secondary structure consists of
alpha helixes, beta sheets and loops

— Loops of varying size can lead to very
similar structure.

Biological Motivation

19



cDNA matching

< cDNA - is the sequence after splicing
and editing, after the introns have been
removed.

» We expect regions of high similarity
separated by long gaps.

e These gaps correspond to the introns
removed by splicing Introns

B Y

— e S
ona [ NN N B W
e .___\V.,-;’_':'-"'"-/-
EXONs
Transcription, elimi-
nation of intron
transcript segments,
and splicing of exons

mRNACT—T1—T1——1

Gap Penalty Models

e Constant Model

— Gives each gap a constant weight, spaces
are free

— Maximize: Y o(S,.T)+W ,*#gaps

— Time O(nm)

— Works well for cDNA matching
- Affine Model

— There is a penalty for starting a gap and a
penalty for each space extending it.

— A single gap con’;ributes W, +aW,

— Maximize: Y s(S,T)+W  x#gaps+\\/ x#spaces
— Time O(nm)

— Most widely used

20



Gap Penalty Models

e Convex model
— Each extra space contributes less penalty
— Gap function is convex in length
— Example\\ ,+\W ,logq
— Time O(nmlogm)
— Better model of biology
» General model

— The weight of a gap is some arbitrary w(q)
— Time O(nm*+mn?)

Example Revised

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT——————-- GTTCATGACGCA

21



Indel model

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT———————- GTTCATGACGCA
Scoring Parameters:

Match: +1
indel: -2

Constant model

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT—-—-—-—- GTTCATGACGCA
Scoring Parameters:

Match: +1
open gap: -2

22



Affine model

AAC-AATTAAG-ACTAC-GTTCATGAC

qizs /1
A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---

AACAATT——————-- GTTCATGACGCA

Scoring Parameters:
Match: +1

Open Gap: -2
Extend Gap:-1

Convex model

AAC-AATTAAG-ACTAC-GTTCATGAC
A-CGA-TTA-GCAC-ACTG-T-C-GA-
AACAATTAAGACTACGTTCATGAC---

AACAATT——————-- GTTCATGACGCA

Scoring Parameters:
Match: +1

Open Gap: -2

Gap Length: -logn

23



Affine Weight Model

» We divide the possible alignments of
the prefixes S; ; and T, ; into 3 types:

Affine Weight Model

Recurrence relations

Al -1 j-1)+s(, J)
A(i, j) =maxsB(i—1, j-1)+s(i, j)
C(i-1j-1)+s(,j)

Al -1 j -1 +W, +W,

B(1. 1) = maX{B(i—l, j—1) +W.

Al -1 j-1)+W, +W,
C@i-1j-1)+W,

S

cq, j)=max{

24



Affine Weight Model

Initial Conditions:
A(i,0) = B(i,0) =W, +iW,
A0, j)=C(i,0) =W, + jW,

Optimal alignment :
V (n,m) = max{A(n,m),B(n,m),C(n,m)}

Complexity
*Time: O(hm) we compute 3 matrices.
*Space: O(nm)

Affine Weight Model

This model has a natural explanation as a

finite state automata. W,

S(i,))

25



Alignment in Real Life

= One of the major uses of alignments is to
find sequences in a “database”

e Such collections contain massive humber of
sequences (order of 10°)

» Finding homologies in these databases with
dynamic programming can take too long

Heuristic Search

« Instead, most searches relay on heuristic
procedures

 These are not guaranteed to find the best
match

e Sometimes, they will completely miss a high-
scoring match

We now describe the main ideas used by

some of these procedures

— Actual implementations often contain additional tricks and
hacks

26



Basic Intuition

= Almost all heuristic search procedure are
based on the observation that real-life
matches often contain long strings with gap-
less matches

= These heuristic try to find significant gap-less
matches and then extend them

Banded DP

e Suppose that we have two strings s//.nJand
t/1.m] such that n=m

« If the optimal alignment of s and t has few
gaps, then path of the alignment will be close

to diagonal

27



Banded DP

e To find such a path, it
suffices to search in a
diagonal region of the matrix

» If the diagonal band has
width 4., then the dynamic
programming step takes
O(kn)

e Much faster than O#?) of
standard DP

Banded DP

Problem:

= If we know that #/i..j/ matches the query s,
then we can use banded DP to evaluate
quality of the match

e However, we do not know this apriori!

How do we select which sequences to align
using banded DP?

28



FASTA Overview

Main idea:
» Find potential diagonals & evaluate them
= Suppose that we have a relatively long gap-

less match
AGCGCCATGGATTGAGCGA

TGCGACATTGATCGACCTA

e Can we find “clues” that will let us find it
quickly?

Signature of a Match

Assumption: good matches contain
several “patches” of perfect matches

TS SR LB
T S

Since this is a gap-less alignment,

all perfect match regions t
should be on one diagonal

29



FASTA

e Given s and t, and a parameter &

» Find all pairs (i,J) such that
s[i..i+k]=t[]..j+K]

» Locate sets of pairs that are on the same
diagonal
— By sorting according to /-/

e Compute score for the diagonal that congain
all of these pairs

FASTA

Postprocessing steps:
— Find highest scoring diagonal matches
— Combine these to potential gapped matches

— Run banded DP on the region containing
these combinations

 Most applications of FASTA use very
small &

(2 for proteins, and 4-6 for DNA)

30



FASTA Output

SCORES Initl: 1201 Initn: 1844 Opt: 1915
Smith-Waterman score: 1915; 59.3% identity in 496 aa overlap

10 20 30 40

A41264 MADKKK I TASL I YAVSVAAIGSLQFGYNTGV INAPEK I 1QAFYNRTL
e e e e e AR RN NN S e N
A49158 MPSGFQQIGSEDGEPPQQRVTGTLVLAVFSAVLGSLQFGYNIGV INAPQKY IEQSYNETW
10 20 30 40 50 60

50 60 70 80 90 100
A41264 SQRSG----ET ISPELLTSLWSLSVAIFSVGGMIGSFSVSLFVNRFGRRNSMLLVNVLAF
1:1 UL REERE=RRRR = === = == == 1l
A49158 LGRQGPEGPSSIPPGTLTTLWALSVAIFSVGGMISSFLIGI 1SQWLGRKRAMLVNNVLAV
70 80 90 100 110 120

BLAST Overview

e BLAST uses similar intuition

= It relies on high scoring matches rather
than exact matches

» It is designed to find alignments of a target
string s against large databases




High-Scoring Pair

e Given parameters: length 4, and threshold T

e Two strings s and 7 of length k& are a high
scoring pair (HSP) if d(s,#)> T

e Given a query s/1.n] BLAST construct all
words w, such that wis an HSP with a 4-
substring of s
— Note that not all substrings of s are HSPs!

» These words serve as seeds for finding
longer matches

High Scoring Pair

Query Sequence MVGASTPRQGAILVRWS
| |

Word

PRE i
PKQ Neighborhood

Words
PKE
HRO ™~
Below HTQ L
Threshold AAA

32



Finding Potential Matches

We can locate seed words in a large database
in a single pass

e Construct a FSA that recognizes seed words

= Using hashing techniques to locate matching
words

Extending Potential Matches

e Once a seed is found, BLAST attempts to find
a local alignment that extends the seed

e Seeds on the same diagonal
are combined (as in FASTA)

5 &




BLAST programs

= BLASTN - Nucleotide query searching a
nucleotide database.

e BLASTP - Protein query searching a protein
database.

e BLASTX - Translated nucleotide query
sequence (6 frames) searching a protein
database.

e TBLASTN - Protein query searching a
translated nucleotide (6 frames) database.

e TBLASTX - Translated nucleotide query (6
frames) searching a translated nucleotide
(6 frames) database

BLAST Search

CIIOUSE PIOETAI U USE A0 (dGAlase F SedlCIL.

Program blasm _|| Database nr P

A Performn ungapped alignment

#h-sublinebi. nlm. nik._gor |

The query sequence is filtered for low complexity regions by default.
Enter here your input data as Accession or I = | Saarchl

| i

700265

(Wene)
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BLAST Output

e List of hits
— Database accession codes, name, description.
— Score in bits (Usually >30 bits is significant )
— Expectation value E()

e For each hit

— A header including hit name, description,
length
— Each hit may contain several HSPs
— Score and expectation value
— how many identical residues

— how many residues contributing positively to the
score

e The local alignment itself

BLAST Output

Distribution of 163 Blast Hits on the Query Sequence

IIJnnaas Morkey (M. fascicularis) preproinsulin mRNA, complets od. S= 318 E=3s-84

Color Key for Alignment Scores

<do 40-50 50-80 | 80-200  DNSESGONNN
bLasE_ERR e
] 500 1000 1500 2000 2500 3000 3500 4000
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BLAST Output

Eﬁ B View Go  Comsenicuo I“I!

o wethini g Contacy F Puspin f Yolow Pages f Downiosd Jf Fina St _§ Chasnwii -]

[ b Boskmans f Locaton ey /rewy rehi ria b gvblastbiane op A e et

B a 24 =5 PR 1]

Score E

Sequences producing significant aligrments: (hits) Walue
sp|PA0410)INS_PANTRE INSULIN PRECURSOR 184 6e-47
spl|PO1308 ) TNS _HUMAN INSULIN PRECURSOR 184 ce-47
sp|P30407 | INS_CERAE INSULIN PRECURSOR 182 de-46
sp|P30406|INS_M&CFA INSULIN PRECURSOR 132 de-4f
spl|PO1311 | TNS _RA&RIT INSULIN PRECURSOR 169 Ze-42
sp|PO1321 | INS_CANFA INSULIN PRECURSOR 166 1le-41
sp|PO1326 | TNSE MOUSE INSULIN 2 PRECURSOR 157 Te-39
sp|POL1323|INSE REaT INSULIN 2 PRECURSOR 157 Te-39
sp|PO1310|INS_HORSE INSULIN PRECURSOR 157 Te-39
splPO1313|TNS CRTLO INSULIN PRECURSOR 157 1le-38
sp|P10604 | INS_AOTTRE INSULIN PRECURSOR 156 Ze-38
sp|PO1322|TNS]_RaT INSULIN 1 PRECURSOR 154  Be-38
sp|PO1315|TNS PIG INSULIN PRECURSOR 152 Ze-37
5p| 062587 | INS_PSAOE INSULIN PRECURSOR 151 Te-37
spl|PO132E5 | THS]1 MOUSE INSULIN 1 PRECURSOR 146 Z2e-35

|
| & WP D 2

BLAST Output

splPO1323 | THSE _RAT INSULIN 2 PRECURSOR
Length = 110

Score = 157 bits (394), Expect = Te-39
Identities = T3/86 (84%), Positiwves = T7/86 (88%)
Frame = +%2

Tuery: 893 FVNOHLCGSHLVEALYLVCGERGFFYIPETRREAEDLOVGOVELGGGPGAGSLOPLALES 262
vV QHLCGSHLVEALYLVCGERGFFYTP +RRE ED 0V O+ELGGGPGAG L0 LALE
Shjct: 25 FYEQHLCGSHLVEALYLVCGERGFFYTPMSRREEVEDP(VANLELGGGPGAGDLOTLALEY 84

Tuery: 263 SLOKRGIVEQCCTSICSLYOLENYCH 340
+ QERGIV+QCCTSICSLYOLENYCH
Shjct: 85 ARQKRGIVDQCCTSICSLYOLENYCN 110

36



What do we use

= Originally Blast did not allow gaps.
— Now people use gapped-Blast
— Gapped blast joins different diagonals.

» For proteins Blast is superior
* For nucleotides Fasta is better.

Protein Alignments

= As we saw, there are many possible
alignments, often with the same score

= We are interested in biologically meaningful
alignments

* The resulting alignment depends on the
score assigned to pairs of amminoacids and
on the indels and gap penalty functions

37



Amminoacid Similarity

e Amminoacids can
be classified
according to their
chemical and
physical
properties.

 When comparing
them, one must
take into account
these properties

Scoring Matrices

= Scoring Matrices assign a numerical
score to any possible pairs of
amminoacids, accounting for their
chemical and physical properties

e Amminoacid Substitution Matrices or
Symbol Comparison Tables

» There are tables for protein comparison
and for nucleic acid comparison

= A huge number of such matrices are

available, each based on different
substitution models

38



PAM Matrices

 PAM (Point Accepted Mutations) matrices were
developed at the end of the ‘70s by analysing
the mutations of amminoacid sequences of
proteins superfamilies tightly related.

e They noticed that these mutations were not at
all random.

e Some substitutions occured more often than
others, probably because they do not alter the
function and/or the structure of a protein.

Unit and PAM Matrices

e We use PAM units to measure the distance
among amminoacid sequences.

e Two sequences S1 and S2 are 1 PAM unit
apart if S1 can be transformed into S2 with 1
single mutation every 100 amminoacids, on
average.

e In general, an amminoacid could mutate
many times, eventually returning to its
original value; therefore, two sequences that
are 1 PAM apart, may be different less than
1%.

39



PAM Matrices

e According to this model, amminoacidic
substitutions observed in a given period of
time, can be extrapolated for longer periods

* In the computation, a mutation in a given
site is considered independent of previous
mutational events in the same site

AWTVASAVRTSI
SpecieB AYTVAAAVRTSII
SpecieC  AWTVAAAVLTSI

B C

40



PAM Matrices Computation: An Example

* p; = a/a, frequency of amminoacid i

° fij =n(a—a) number of mutations a;—3;
o f= 2 f number of mutations of a

o f= 2i f. total number of mutations

PAM Matrices Computation: An Example

e Ifm;= fi /100 D is the probability of mutation of a,
then

M;=1-m;

is the probability of conservation of g,

= The probability of a mutation d; %j is
M;; = (f;/f) m;

41



PAM Matrices Computation: An Example

e Matrix Mij So computed is a transition matrix

e In general, to compute the probabilities for k
evolutionary steps:

PAM Matrices

e There are different types of PAM Matrices, each
one is used to compare 2 squences that are a
given number of PAM units apart.

e For instance, PAM250 can be used to compare
sequences that are 250 PAM units apart.

e An entry (i,j) of the PAM250 matrix contains the
score of the pair of amminoacids (Ai,Aj); such
score is proportional to the expected frequency
of the substitution of Ai with Aj in two sequences
that are 250 PAM units apart.

42



Table 1 — The leog codds

matrix feor 250 PaMs (multiplied by 10)

E F G H
g-4 1-1
-5 -4 -3 -3
3 & 1 1
4 -5 0 1
F 9 -5 -2

I K L ¥« Mm@ F R KR 85 T WV W X
-1-1-2-1 ¢ 1 a9-2 1 1 9d-& -3
-2 -F 6 -5 -4-3-5-4 0-2-2-8 0
-2 94 -3 2-1 2-1 a9 0-2-7-4
-2 9g-3-2 1-1 2-1 g9 ag-2-7-4

1-5 2 0-4-5-5-4-3 -3 -1 a 7
-3-2-4-3 ¢-1-1-3 1 0-1-7-5
-2 g-2-2 2 0 3 2-1-1-2-3 0

5-2 2 2-2-2-2-2-1 0 4-5-1

5-3 0 1-1 1 3 ad 9-2-3 -4
L & 4 -3 -3 -2 -3 -3-2 2-2-1
M £ -2 -2-1 9-2-1 2-4 -2
M 2-1 1 9 1 g -2 -4 -2

P € 0 09 1 g -1-%5 -5

] 4 1 -1-1-2-5 -4

R £ 0 -1 -2 2 -4

] 2 1-1-2 -3

T 3 0-5 -3

v 4 -6 -2

W 17 9

¥ 19

BLOSUM Matrices (Henikoff &

Henikoff, 1992

BLOSUM

Sequences.

families

Is computed

e Blocks Amino Acid Substitution Matrices =

e Based on the amminoacid substitutions
observed in —2000 conserved blocks of

» These blocks are extracted from 500 protein

= Segments belonging to each block are
clustered according to their similarity. Every
cluster is considered as a single sequence
and the number of mutations in each column
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Example of BLOSUM Matrix
computation

A 9Aand 1S

36 A—A (f,n) and 9
A—>S (frs)

210 possible pairs
of amminoacids

The frequency of
A—A 15 gap = Taal(fan
+f,s) = 0.8

» The frequency of
A—S 1S Qpg = Tas/(fan
+fag) = 0.2

>>2>2>>0n>>Pp

Example of BLOSUM Matrix
computation

» The expected frequency that A is involved in
a mutation is p, = (g + 0xs/2) = 0.9

* The expected frequency that S is involved in
a mutation is ps = (g,</2) = 0.1

» The expected frequency of a pair AAise,, =
p,2 = 0.81

» The expected frequency of a pair AS is e, =2
pa Ps=0.18
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Example of BLOSUM Matrix
computation

e The score for AA in the matrix is q,./e,, = 0,99
and for AS is q,¢/es=1.11

e The values are converted in bits:
Saa = 109;(0an/€an) = -0.04
Sas = 109,(Gas/€as) = 0,30

BLOSUM Matrix computation

= From every cluster a matrix is computed

e For instance, a cluster that contains
seguences with >60% identities results in a
matrix called BLOSUMG60

e The most frequently used matrix is
BLOSUMG62
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Table 2 - The log odds matrix for

BLOSUM 62

E F G H
1-2 9 -2
-4 -2 -3 -3
2-3-1-1
5-3-2 0
F & -3 -1
G & -2
H 8

I
K

I
-1
-1
-3
-3

]
-4
-3

4

L

K L M N P

-1
-3
-1

1
-3
-2
-1
-3

5

M

-1
-1
-4
-3

Q
-4
-3

2
=2

4

N

-1
-1
-3
-2
Q
-3
-2
1
-1
2
5

P

-2
-3
1
0
-3
0
1
-3
0
-3
-2

-1
-3
-1
-1
-4
-2
-2
-3
-1
-3
-2
-2

7

R

Q
-1
=3

Q

2
-3
-2

Q
-3

1
-2

Q

a
-1

5

8

R 8 T
1 0 0-3

-1
-3
-2
a
-3
-2
a
-3
2
-2
-1
a
-2
1
5

T

-1
9]
Y]

-2
Y]

-1

-2
9]

-2

-1
1

-1
Q

-1
4

v

-1
-1
-1
-2
-2
-2
-1
-1
-1
-1

Q
-1
-1
-1

1

5

W

v W X

-1
-3
-2
-1
-3
-3

=2

-3
-2
-2
-3
-2

Y]

4

Y

=2
-4
-3

1
-2
-2
-3
-3
-2
-1
-4
-4
-2
-3
-3
-2
-3
11

-2
=2
-3
-2

-3

-1
=2
-1
-1
-2
-3
-1
-2
-2
-2
-1

7

The Hazard of Large Databases

chance

- Define p, =P(d(s,1)>¢|V)

= This is the probability that two unrelated
sequences will match with score » ¢ by

P(max, d(s,1)>e)=1-(1-p ) ~1-e ¥

» Assuming that they are independent of each
other, and all are unrelated to s, we have
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Local Matching

* Question: Which local alignment query is

expected to give a higher score:

— To a short sequence

— To a long sequence?

A local match can begin at any of the nm

entries in the DP matrix.

The score is the optimal of all these

starting points.

» If all starting points were independent we
would need to calculate the probability of
attaining such a score in nm trails.

Score Significance-Fasta

< How meaningful is a score?
e Calculate distribution of scores and

related scores

#records
M—
—

/ ¥
—Random records i
Really relaied reeords ol

£COr

- Under reasonable assumptions the
scores for un-gapped alignment behave
according to the Extreme Value
Distribution
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Extreme Value Distribution (BLAST)

= We ask the following questions: Given a
database of size m and a sequence of size n

= What is the expected number of hits with

score at least S? This number is called an E-
score

E(S) = Kmne™

= Notice this is a Poisson distribution.
» K corrects for the dependencies
= )\ depends on the scoring matrix
= Doubling length of sequence doubles expectation
= Doubling score causes E to decrease exponentially

Blast P-value

e Recall Poisson distribution:
— Probability of finding no hits with a score >= S

~E
e
— Therefore probability of finding at least one hit
with score >= S is

i Pe E

— This is called the P-value.
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