

Sequence Comparison

Much of bioinformatics involves sequences

- DNA sequences
- RNA sequences
- Protein sequences
- We can think of these sequences as strings of letters
- DNA & RNA: alphabet of 4 letters
- Protein: alphabet of 20 letters

• Finding similarity between sequences is important for many biological questions For example:

- Find genes/proteins with common origin
 Allows to predict function & structure
- Locate common subsequences in genes/proteins
 - Identify common "motifs"
- Locate sequences that might overlap
 - Help in sequence assembly

Scoring Alignments

Rough intuition:

- Similar sequences evolved from a common ancestor
- Evolution changed the sequences from this ancestral sequence by **mutations**:
 - Replacements: one letter replaced by another
 - Deletion: deletion of a letter
 - Insertion: insertion of a letter
- Scoring of sequence similarity should examine how many operations took place

Local Alignment Example									
	1	_		a	_				
S = TAATA	0	т 1	А 2	С 3	т 4	а 5	А 6		
t = TACTAA	0	0	0	0	0	0	0		
т 1	0	1	0	0	1	0	0		
A 2	0	0	2	0	0	2	1		
A 3	0	0	1	1	0	1	3		
т 4	0	0	0	0	2	0	1		
A 5	0	0	1	0	0	3	1		

- One of the major uses of alignments is to find sequences in a "database"
- Such collections contain massive number of sequences (order of 10⁶)
- Finding homologies in these databases with dynamic programming can take too long

Heuristic Search

- Instead, most searches relay on heuristic procedures
- These are not guaranteed to find the best match
- Sometimes, they will completely miss a highscoring match

We now describe the main ideas used by some of these procedures

 Actual implementations often contain additional tricks and hacks

- Given parameters: length k, and threshold T
- Two strings *s* and *t* of length *k* are a high scoring pair (HSP) if *d(s,t) > T*
- Given a query *s[1..n]*, BLAST construct all words w, such that *w* is an HSP with a *k*substring of *s*
 - Note that not all substrings of *s* are HSPs!
- These words serve as seeds for finding longer matches

Finding Potential Matches

We can locate seed words in a large database in a single pass

- Construct a FSA that recognizes seed words
- Using hashing techniques to locate matching words

Edit View Go Communicator WebMail 2 Contact 2 People 2 Yellow Pages 2 Download 2	Find Sites Channels			
Bookmants & Locatorn http://www.ncbi.mlm.mih.gov/blast/				
	Print Security Stor			
gb-sub@nebi.nlm.nih.gov	choose program to use	สมณ และสมสะ	se w searcn.	
	Program blastn =	Database	nr	
Perform ungapped ali				
i enonin angappea an	Eminean			
The query sequence is <u>filtered</u> fo	r low complexity regions	by default.		
Enter here your input data as	Accession or GI	= s	earch	
J00265				
			a second a second second second second	

BLAST Output

List of hits

- Database accession codes, name, description.
- Score in bits (Usually >30 bits is significant)
- Expectation value E()
- For each hit
 - A header including hit name, description, length
 - Each hit may contain several HSPs
 - Score and expectation value
 - how many identical residues
 - how many residues contributing positively to the score
- The local alignment itself

BLAST Output	71
Instrume BLAST Search Resolts e2+ File Edit View Oo Communication Webhall & Contact & Propix & Vetory Pages & Download & Find StateChannell Image: Download & LocationState / Vetory Pages & Download & Find StateChannell Image: Download & LocationState / Vetory PagesDownload & Find StateChannell	
Sequences producing significant alignments: <u>sp[P30410]INS PANTR</u> INSULIN PRECURSOR <u>sp[P30407]INS CERAE</u> INSULIN PRECURSOR <u>sp[P30406]INS MACFA</u> INSULIN PRECURSOR <u>sp[P30406]INS MACFA</u> INSULIN PRECURSOR	Score E (bits) Value <u>184</u> 6e-47 <u>182</u> 4e-46 182 4e-46
sp[P30406]INS_MACPA INSULIN PRECURSOR sp[P01311]INS_CAMPA INSULIN PRECURSOR sp[P01321]INS_CAMPA INSULIN PRECURSOR sp[P01326]INS_MOUSE INSULIN 2 PRECURSOR sp[P01310]INS_HARSE INSULIN 2 PRECURSOR sp[P01313]INS_CRILO INSULIN PRECURSOR	$\begin{array}{c} 182 & 4e-4b \\ 169 & 2e-42 \\ 166 & 1e-41 \\ 157 & 7e-39 \\ 157 & 7e-39 \\ 157 & 7e-39 \\ 157 & 7e-39 \\ 157 & 1e-38 \end{array}$
sp[P10604]INS_A0TTR INSULIN PRECURSOR sp[P01322]INSI_RAT INSULIN 1 PRECURSOR sp[P01315]INS_PIG_INSULIN PRECURSOR sp[P01325]INSI_MOUSE_INSULIN PRECURSOR sp[P01325]INSI_MOUSE_INSULIN 1 PRECURSOR	156 2e-38 154 8e-38 152 2e-37 151 7e-37 146 2e-35

Unit and PAM Matrices

- We use PAM units to measure the distance among amminoacid sequences.
- Two sequences S1 and S2 are <u>1 PAM</u> unit apart if S1 can be transformed into S2 with 1 single mutation every 100 amminoacids, on average.
- In general, an amminoacid could mutate many times, eventually returning to its original value; therefore, two sequences that are 1 PAM apart, may be different less than 1%.

PADA MATRICES COMPUTATION: An Example • If $m_i = f_i/100 f_i p_i$ is the probability of mutation of $a_{i'}$ then $M_{ii} = 1 - m_i$ is the probability of conservation of a_i • The probability of a mutation $a_i \rightarrow a_j$ is $M_{ij} = (f_{ij}/f_i) m_i$

			97
_	Table 1 - The	e log odds matrix for 2	250 PAMs (multiplied by 10)
	A C D E A 2 -2 0 0 C 12 -5 -5 D 4 3 E 4 F G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BLOSUM Matrices (Henikoff & Henikoff, 1992)

- Blocks Amino Acid Substitution Matrices = BLOSUM
- Based on the amminoacid substitutions observed in ~2000 conserved blocks of sequences.
- These blocks are extracted from 500 protein families
- Segments belonging to each block are clustered according to their similarity. Every cluster is considered as a single sequence and the number of mutations in each column is computed

Example of BLOSUM Matrix computation

- The expected frequency that A is involved in a mutation is $p_A = (q_{AA} + q_{AS}/2) = 0.9$
- The expected frequency that S is involved in a mutation is $p_s = (q_{AS}/2) = 0.1$
- The expected frequency of a pair AA is $e_{AA} = p_A^2 = 0.81$
- The expected frequency of a pair AS is $e_{AS} = 2$ $p_A \ p_S = 0.18$

The Hazard of Large Databases

- Define $p_{\varepsilon} = P(d(s,t) > \varepsilon | U)$
- This is the probability that two unrelated sequences will match with score > ε by chance
- Assuming that they are independent of each other, and all are unrelated to *s*, we have

 $P(\max_{t} d(s,t) > \varepsilon) = 1 - (1 - p_{\varepsilon})^{N} \approx 1 - e^{-Np_{\varepsilon}}$

Local Matching

- Question: Which local alignment query is expected to give a higher score:
 - To a short sequence
 - To a long sequence?
- A local match can begin at any of the *nm* entries in the **DP** matrix.
- The score is the optimal of all these starting points.
- If all starting points were independent we would need to calculate the probability of attaining such a score in *nm* trails.

