Sequence Alignment

Marco Botta
Dipartimento di Informatica
Università di Torino botta@di.unito.it www.di.unito.it/~botta/didattica/

Sequence Comparison

Much of bioinformatics involves sequences

- DNA sequences
- RNA sequences
- Protein sequences

We can think of these sequences as strings of letters

- DNA \& RNA: alphabet of 4 letters
- Protein: alphabet of 20 letters

Sequence Comparison (cont)

- Finding similarity between sequences is important for many biological questions
For example:
- Find genes/proteins with common origin
- Allows to predict function \& structure
- Locate common subsequences in genes/proteins
- Identify common "motifs"
- Locate sequences that might overlap
- Help in sequence assembly

Sequence Alignment

I nput: two sequences over the same alphabet
Output: an alignment of the two sequences
Example:

- GCGCATGGATTGAGCGA
- TGCGCCATTGATGACCA

A possible alignment:

$$
\begin{aligned}
& \text { - GCGC - ATGGATTGAGCGA } \\
& \text { TGCGCCATTGAT-GACC-A }
\end{aligned}
$$

Alignments

-GCGC-ATGGATTGAGCGA
 TGCGCCATTGAT-GACC-A

Three elements:

- Perfect matches
- Mismatches
- Insertions \& deletions (indel)

Choosing Alignments

There are many possible alignments
For example, compare:
-GCGC-ATGGATTGAGCGA
TGCGCCATTGAT-GACC-A
to
------GCGCATGGATTGAGCGA
TGCGCC----ATTGATGACCA--
Which one is better?

Scoring Alignments

Rough intuition:

- Similar sequences evolved from a common ancestor
- Evolution changed the sequences from this ancestral sequence by mutations:
- Replacements: one letter replaced by another
- Deletion: deletion of a letter
- Insertion: insertion of a letter
- Scoring of sequence similarity should examine how many operations took place

Simple Scoring Rule

Score each position independently:

- Match: $\quad+1$
- Mismatch: -1
- Indel -2

Score of an alignment is sum of positional scores

Example

Example:

-GCGC-ATGGATTGAGCGA
 TGCGCCATTGAT-GACC-A

Score: $(+1 \times 13)+(-1 \times 2)+(-2 \times 4)=3$

Score: $(+1 \times 5)+(-1 \times 6)+(-2 \times 12)=-25$

More General Scores

- The choice of $+1,-1$, and -2 scores was quite arbitrary
- Depending on the context, some changes are more plausible than others
- Exchange of an amino-acid by one with similar properties (size, charge, etc.)
vs.
- Exchange of an amino-acid by one with opposite properties

Additive Scoring Rules

- We define a scoring function by specifying a function

$$
\begin{aligned}
& \sigma:(\mathrm{A} \cup\{-\}) \times(\mathrm{A} \cup\{-\}) \mapsto \Re \\
& \mathrm{A}=\{a, c, g, t\}
\end{aligned}
$$

- $\sigma(x, y)$ is the score of replacing x by y
- $\sigma(x,-)$ is the score of deleting x
- $\sigma(-, x)$ is the score of inserting x
- The score of an alignment is the sum of position scores

$$
\sum_{i=1}^{n} \sigma(x, y)
$$

Edit Distance

- The edit distance between two sequences is the "cost" of the "cheapest" set of edit operations needed to transform one sequence into the other

$$
\mathrm{d}\left(s_{1}, s_{2}\right)=\max _{\text {alignment of } s_{1} \& s_{2}} \text { score(alignment) }
$$

- Computing edit distance between two sequences almost equivalent to finding the alignment that minimizes the distance

Computing Edit Distance

- How can we compute the edit distance??
- If $|s|=n$ and $|\eta|=m$, there are more than $\binom{m+n}{m}$ alignments
- The additive form of the score allows to perform dynamic programming to compute edit distance efficiently
- $(m+n)(m+n-1)(m+n-2) . .1$
- $m(m-1)(m-2) \ldots(m-n) . . n(n-1)(n-2) \ldots 1$

Recursive Argument

- Suppose we have two sequences:

$$
s[1 . n+1] \text { and }+[1 . . m+1]
$$

The best alignment must be in one of three cases:
\rightarrow 1. Last position is $(s[n+1],+[m+1])$
2. Last position is ($s[n+1],-)$
3. Last position is $(-,+[m+1])$

$$
\begin{aligned}
d(s[1 . . n+1], t[1 . . m+1])= & d(s[1 . . n], t[1 . . m])+ \\
& \sigma(s[n+1], t[m+1])
\end{aligned}
$$

Recursive Argument

- Suppose we have two sequences: $s[1 . . n+1]$ and $t[1 . . m+1]$
The best alignment must be in one of three cases:

1. Last position is $(s[n+1],+[m+1])$
2. Last position is ($s[n+1],-)$
3. Last position is (,$-+[m+1]$)

$$
\begin{aligned}
d(s[1 . . n+1], t[1 . . m+1])= & d(s[1 . ., n], t[1 . m+1])+ \\
& \sigma(s[n+1],-)
\end{aligned}
$$

Recursive Argument

- Suppose we have two sequences: $s[1 . . n+1]$ and $+[1 . . m+1]$
The best alignment must be in one of three cases:

1. Last position is $(s[n+1],+[m+1])$
2. Last position is $(s[n+1],-)$
\rightarrow 3. Last position is $(-,+[m+1])$

$$
\begin{gathered}
d(s[1 . . n+1], t[1 . . m+1])=d(s[1 . ., n+1], t[1 . . m])+ \\
\\
\sigma(-, t[m+1])
\end{gathered}
$$

Recursive Argument

Define the notation:

$$
V[i, j]=d(s[1 . . i], t[1 . . j])
$$

- Using the recursive argument, we get the following recurrence for V :

$$
V[i+1, j+1]=\max \left(\begin{array}{l}
V[i, j]+\sigma(s[i+1],+[j+1]) \\
V[i, j+1]+\sigma(s[i+1],-) \\
V[i+1, j]+\sigma(-, t[j+1])
\end{array}\right)
$$

Recursive Argument

- Of course, we also need to handle the base cases in the recursion:

$$
\begin{aligned}
& V[0,0]=0 \\
& V[i+1,0]=V[i, 0]+\sigma(s[i+1],-) \\
& V[0, j+1]=V[0, j]+\sigma(-, t[j+1])
\end{aligned}
$$

Dynamic Programming Algorithm

We fill the matrix using the recurrence rule

Dynamic Programming Algorithm

		A	G	C
	0	1	2	3
0				
A 1				
A 2	.			
A 3				
C 4				

Conclusion：$d(A A A C, A G C)=-1$

Reconstructing the Best Alignment

－To reconstruct the best alignment，we record which case in the recursive rule maximized the score

	0	A	A	
0	$0 \leftarrow-2 \leftarrow-4 \leftarrow 6$			
A 1	$-21 \leftarrow-1 \leftarrow-3$			
	¢人くく大			
A 2				
A 3	3 -6			
C 4				

Reconstructing the Best Alignment

- We now trace back the path that corresponds to the best alignment

AAAC
AG-C

Reconstructing the Best Alignment

- Sometimes, more than one alignment has the best score

AAAC
A-GC

Complexity

Space: $O(m n)$
 Time: $O(m n)$

- Filling the matrix $O(m n)$
- Backtrace $O(m+n)$

Local Alignment

Consider now a different question:

- Can we find similar substring of s and t ?
- Formally, given $s[1 . . n]$ and $t[1 . . m]$ find i, j, k, and /such that $d(s[i . . j], t[k . . /])$ is maximal

Local Alignment

- As before, we use dynamic programming
- We now want to set $V[i, j]$ to record the best alignment of a suffix of $s[1 . . i]$ and a suffix of $t[1 . . j]$
- How should we change the recurrence rule?

Local Alignment

New option:

- We can start a new match instead of extend previous alignment

$$
V[i+1, j+1]=\max \left(\begin{array}{l}
V[i, j]+\sigma(s[i+1], t[j+1]) \\
V[i, j+1]+\sigma(s[i+1],-) \\
V[i+1, j]+\sigma(-, t[j+1]) \\
0 \underbrace{}_{\text {Alignment of empty suffixes }}
\end{array}\right.
$$

Local Alignment

- Again, we also need to handle the base cases in the recursion:

$$
\begin{aligned}
& V[0,0]=0 \\
& V[i+1,0]=\max (0, V[i, 0]+\sigma(s[i+1],-)) \\
& V[0, j+1]=\max (0, V[0, j]+\sigma(-, t[j+1]))
\end{aligned}
$$

Local Alignment Example

$$
\begin{aligned}
& s=\text { TAATA } \\
& t=\text { ATCTAA }
\end{aligned}
$$

Local Alignment Example

$$
\begin{array}{lr|ccccccc}
s=\text { TAATA } & & & \mathbf{T} & \text { A } & \mathbf{C} & \mathbf{T} & \text { A } & \text { A } \\
\boldsymbol{t}=\text { TACTAA } & & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
\cline { 3 - 8 } & \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& \text { T } 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
& \text { A 2 } & 0 & 0 & 2 & 0 & 0 & 2 & 1 \\
& \text { A 3 } & 0 & 0 & 1 & 1 & 0 & 1 & 3 \\
& \text { T 4 } & 0 & 0 & 0 & 0 & 2 & 0 & 1 \\
& \text { A 5 } & 0 & 0 & 1 & 0 & 0 & 3 \leftarrow 1
\end{array}
$$

Local Alignment Example

$$
\begin{aligned}
& s=\text { TAATA } \\
& t=\text { TACTAA }
\end{aligned}
$$

		\mathbf{T}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{A}
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
T 1	0	1	0	0	1	0	0
A 2	0	0	2	0	0	2	1
A 3	0	0	1	1	0	1	3
T 4	0	1	0	0	2	0	1
A 5	0	0	2	0	0	3	1

Local Alignment Example

$$
\begin{aligned}
& s=\text { TAATA } \\
& t=\text { TACTAA }
\end{aligned}
$$

Sequence Alignment

We have seen two variants of sequence alignment:

- Global alignment
- Local alignment

Other variants:

- Finding best overlap (exercise)

All are based on the same basic idea of dynamic programming

Alignment with Gaps

```
    AAC-AATTAAG-ACTAC-GTTCATGAC
    A-CGA-TTA-GCAC-ACTG-T-C-GA-
    AACAATTAAGACTACGTTCATGAC---
II
    AACAATT-------GTTCATGACGCA
```

 I

Gaps

- Both alignments have the same number of matches and spaces but...alignment II seems better.
- Definition: A gap is any maximal, consecutive run of spaces in a single string.
- The length of the gap will be the number of spaces in it.
- Example I has 11 gaps while example II has only 2 gaps.
- Idea: develop alignment scores that take gaps (not spaces) into account.

Biological Motivation

- Number of mutational events
- A single gap - due to single event that removed a number of residues.
- Each separate gap - due to distinct independent events.
- Protein structure
- Protein secondary structure consists of alpha helixes, beta sheets and loops
- Loops of varying size can lead to very similar structure.

Biological Motivation

cDNA matching

- cDNA - is the sequence after splicing and editing, after the introns have been removed.
- We expect regions of high similarity separated by long gaps.
- These gaps correspond to the introns removed by splicing

Gap Penalty Models

- Constant Model
- Gives each gap a constant weight, spaces are free
- Maximize: $\sum \sigma\left(S_{i}^{\prime}, T_{i}^{\prime}\right)+W_{g} \times \#$ gaps
- Time O(nm)
- Works well for cDNA matching
- Affine Model
- There is a penalty for starting a gap and a penalty for each space extending it.
- A single gap contributes $W_{g}+q W_{s}$
- Maximize: $\sum s\left(S_{i}^{\prime}, T_{i}^{\prime}\right)+W_{g} \times \# g a p s+W_{s} \times \#$ spaces
- Time $O(n m)$
- Most widely used

Gap Penalty Models

- Convex model
- Each extra space contributes less penalty
- Gap function is convex in length
- Example $W_{g}+W_{s} \log q$
- Time O(nm $\log m)$
- Better model of biology
- General model
- The weight of a gap is some arbitrary $w(q)$
- Time $O\left(n m^{2}+m n^{2}\right)$

Example Revised

AAC-AATTAAG-ACTAC-GTTCATGAC
I
A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC---
II
AACAATT--------GTTCATGACGCA

Indel model

AAC - AATTAAG - ACTAC - GTTCATGAC
A-CGA-TTA-GCAC-ACTG-T-C-GA-
AACAATTAAGACTACGTTCATGAC---
-6
AACAATT------GTTCATGACGCA

Scoring Parameters: Match: +1 indel: -2

Constant model

AAC-AATTAAG-ACTAC-GTTCATGAC

A-CGA-TTA-GCAC-ACTG-T-C-GA-
AACAATTAAGACTACGTTCATGAC---
12 II
AACAATT-------GTTCATGACGCA

```
Scoring Parameters:
Match: +1
open gap: -2
```


Affine model

AAC - AATTAAG - ACTAC - GTTCATGAC
-17 I
A-CGA-TTA-GCAC-ACTG-T-C-GA-

AACAATTAAGACTACGTTCATGAC - -
1 II
AACAATT------ GTTCATGACGCA

Scoring Parameters:
Match: +1
Open Gap: -2
Extend Gap:-1

Convex model

AAC-AATTAAG-ACTAC-GTTCATGAC
A-CGA-TTA-GCAC-ACTG-T-C-GA-
AACAATTAAGACTACGTTCATGAC---
AACAATT------GTTCATGACGCA

Scoring Parameters:
Match: +1
Open Gap: -2
Gap Length: -logn

Affine Weight Model

- We divide the possible alignments of the prefixes $S_{1 . . i}$ and $T_{1 . . j}$ into 3 types:

Affine Weight Model

Recurrence relations

$$
\begin{aligned}
& A(i, j)=\max \left\{\begin{array}{l}
A(i-1, j-1)+s(i, j) \\
B(i-1, j-1)+s(i, j) \\
C(i-1, j-1)+s(i, j)
\end{array}\right. \\
& B(i, j)=\max \left\{\begin{array}{l}
A(i-1, j-1)+W_{g}+W_{s} \\
B(i-1, j-1)+W_{s}
\end{array}\right. \\
& C(i, j)=\max \left\{\begin{array}{l}
A(i-1, j-1)+W_{g}+W_{s} \\
C(i-1, j-1)+W_{s}
\end{array}\right.
\end{aligned}
$$

Affine Weight Model

Initial Conditions:

$$
\begin{aligned}
& A(i, 0)=B(i, 0)=W_{g}+i W_{s} \\
& A(0, j)=C(i, 0)=W_{g}+j W_{s}
\end{aligned}
$$

Optimal alignment :

$$
V(n, m)=\max \{A(n, m), B(n, m), C(n, m)\}
$$

Complexity
-Time: $O(n m)$ we compute 3 matrices.

- Space: O(nm)

Affine Weight Model

This model has a natural explanation as a finite state automata.

Alignment in Real Life

- One of the major uses of alignments is to find sequences in a "database"
- Such collections contain massive number of sequences (order of 10^{6})
- Finding homologies in these databases with dynamic programming can take too long

Heuristic Search

- Instead, most searches relay on heuristic procedures
- These are not guaranteed to find the best match
- Sometimes, they will completely miss a highscoring match

We now describe the main ideas used by some of these procedures

- Actual implementations often contain additional tricks and hacks

Basic Intuition

- Almost all heuristic search procedure are based on the observation that real-life matches often contain long strings with gapless matches
- These heuristic try to find significant gap-less matches and then extend them

Banded DP

- Suppose that we have two strings $s[1 . . n]$ and $t[1 . \mathrm{m}]$ such that $n \approx m$
- If the optimal alignment of s and t has few gaps, then path of the alignment will be close to diagonal

Banded DP

- To find such a path, it suffices to search in a diagonal region of the matrix
- If the diagonal band has width k, then the dynamic programming step takes $O(k n)$
- Much faster than $O\left(n^{2}\right)$ of standard DP

s

Banded DP

Problem:

- If we know that $t[i . . j]$ matches the query s, then we can use banded DP to evaluate quality of the match
- However, we do not know this apriori!

How do we select which sequences to align using banded DP?

FASTA Overview

Main idea:

- Find potential diagonals \& evaluate them
- Suppose that we have a relatively long gapless match

$$
\begin{aligned}
& \text { AGCGCCATGGATTGAGCGA } \\
& \text { TGCGACATTGATCGACCTA }
\end{aligned}
$$

- Can we find "clues" that will let us find it quickly?

Signature of a Match

Assumption: good matches contain several "patches" of perfect matches AGCGCCATGGATTGAGCGA TGCGACATTGATCGACCTA

Since this is a gap-less alignment all perfect match regions should be on one diagonal

FASTA

- Given s and t, and a parameter k
- Find all pairs (i, j) such that $s[i . . i+k]=t[j . . j+k]$
- Locate sets of pairs that are on the same diagonal
- By sorting according to $i-j$
- Compute score for the diagonal that contsain all of these pairs

FASTA

Postprocessing steps:

- Find highest scoring diagonal matches
- Combine these to potential gapped matches
- Run banded DP on the region containing these combinations
- Most applications of FASTA use very small k
(2 for proteins, and 4-6 for DNA)

FASTA Output

```
SCORES Init1: 1201 Initn: 1844 Opt: 1915
Smith-Waterman score: 1915; 59.3% identity in 496 aa overlap
```

$10 \quad 20 \quad 30 \quad 40$

A41264
A49158
MADKKKITASLIYAVSVAAIGSLQFGYNTGVINAPEKIIQAFYNRTL
::::|::|: || |::|||||||| ||||||:|:|: ||:|
MPSGFQQIGSEDGEPPQQRVTGTLVLAVFSAVLGSLQFGYNIGVINAPQKVIEQSYNE

| 10 | 20 | 30 | 40 | 50 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 60 | 70 | 80 | 90 | 100 |

$\begin{array}{llllll}50 & 60 & 70 & 80 & 90 & 100\end{array}$
A41264 SQRSG---ETISPELLTSLWSLSVAIFSVGGMIGSFSVSLFVNRFGRRNSMLLVNVLAF

A49158 LGRQGPEGPSSIPPGTLTTLWALSVAIFSVGGMISSFLIGIISQWLGRKRAMLVNNVLAV $70 \quad 80$ 90 100 110 120

BLAST Overview

- BLAST uses similar intuition
- It relies on high scoring matches rather than exact matches
- It is designed to find alignments of a target string s against large databases

High-Scoring Pair

- Given parameters: length k, and threshold T
- Two strings s and t of length k are a high scoring pair (HSP) if $d(s, t)>T$
- Given a query s[1..n], BLAST construct all words w, such that w is an HSP with a k substring of s
- Note that not all substrings of s are HSPs!
- These words serve as seeds for finding longer matches

High Scoring Pair

Query Sequence M VGASTPRQGAILVRWS

, PRQ Word

Finding Potential Matches

We can locate seed words in a large database in a single pass

- Construct a FSA that recognizes seed words
- Using hashing techniques to locate matching words

Extending Potential Matches

- Once a seed is found, BLAST attempts to find a local alignment that extends the seed
- Seeds on the same diagonal are combined (as in FASTA)

BLAST programs

- BLASTN - Nucleotide query searching a nucleotide database.
- BLASTP - Protein query searching a protein database.
- BLASTX - Translated nucleotide query sequence (6 frames) searching a protein database.
- TBLASTN - Protein query searching a translated nucleotide (6 frames) database.
- TBLASTX - Translated nucleotide query (6 frames) searching a translated nucleotide (6 frames) database

BLAST Search

BLAST Output

- List of hits
- Database accession codes, name, description.
- Score in bits (Usually >30 bits is significant)
- Expectation value E()
- For each hit
- A header including hit name, description, length
- Each hit may contain several HSPs
- Score and expectation value
- how many identical residues
- how many residues contributing positively to the score
- The local alignment itself

BLAST Output

BLAST Output

BLAST Output

splP01323|INS2 RAT INSULIN 2 PRECURSOR
Length $=110$
Score $=157$ bits (394), Expect $=7 e-39$
Identities $=73 / 86$ (84\%), Positives $=77 / 86$ (88\%)
Frame $=+2$
Query : 83 FUNQHLCGSHL WEALYLVCGERGFFYTPKTRREAEDLQUGQUELGGGPGAGSLQPLALEG 262
FV QHLCGSHLUEALYLVCGERGFFYTP +RRE ED QU Q+ELGGGPGAG LQ LALE
Sbjct: 25 FUKQHLCGSHLUEALYLVCGERGFFYTPMSRREUEDPQUAQLELGGGPGAGDLQTLALEV 84
Query: 263 SLQKRGIVEQCCTSICSLYQLENYCN 340

+ QKRGIU+QCCTSICSLYQLENYCN
Sbjet: 85 ARQKRGIVDQCCTSICSLYQLENYCN 110

What do we use

- Originally Blast did not allow gaps.
- Now people use gapped-Blast
- Gapped blast joins different diagonals.
- For proteins Blast is superior
- For nucleotides Fasta is better.

Protein Alignments

- As we saw, there are many possible alignments, often with the same score
- We are interested in biologically meaningful alignments
- The resulting alignment depends on the score assigned to pairs of amminoacids and on the indels and gap penalty functions

Amminoacid Similarity

- Amminoacids can be classified according to their chemical and physical properties.
- When comparing them, one must take into account these properties

Scoring Matrices

- Scoring Matrices assign a numerical score to any possible pairs of amminoacids, accounting for their chemical and physical properties
- Amminoacid Substitution Matrices or Symbol Comparison Tables
- There are tables for protein comparison and for nucleic acid comparison
- A huge number of such matrices are available, each based on different substitution models

PAM Matrices

- PAM (Point Accepted Mutations) matrices were developed at the end of the ' 70 s by analysing the mutations of amminoacid sequences of proteins superfamilies tightly related.
- They noticed that these mutations were not at all random.
- Some substitutions occured more often than others, probably because they do not alter the function and/or the structure of a protein.

Unit and PAM Matrices

- We use PAM units to measure the distance among amminoacid sequences.
- Two sequences S1 and S2 are 1 PAM unit apart if S1 can be transformed into S2 with 1 single mutation every 100 amminoacids, on average.
- In general, an amminoacid could mutate many times, eventually returning to its original value; therefore, two sequences that are 1 PAM apart, may be different less than 1%.

PAM Matrices

- According to this model, amminoacidic substitutions observed in a given period of time, can be extrapolated for longer periods
- In the computation, a mutation in a given site is considered independent of previous mutational events in the same site

PAM Matrices Computation: An Example

- $p_{i}=a_{i} / a_{\text {tot }}$ frequency of amminoacid i
- $f_{i j}=n\left(a_{i} \rightarrow a_{j}\right)$ number of mutations $a_{i} \rightarrow a_{j}$
- $f_{i}=\sum_{j} f_{i j} \quad$ number of mutations of a_{i}
- $f=\sum_{i} f_{i} \quad$ total number of mutations

PAM Matrices Computation: An Example

- If $m_{i}=f_{i} / 100 \cdot f p_{i}$ is the probability of mutation of $a_{i^{\prime}}$ then

$$
M_{i i}=1-m_{i}
$$

is the probability of conservation of a_{i}

- The probability of a mutation $a_{i} \rightarrow a_{j}$ is

$$
M_{i j}=\left(f_{i j} / f_{i}\right) m_{i}
$$

PAM Matrices Computation: An Example

- Matrix $M_{i j}$ so computed is a transition matrix
- In general, to compute the probabilities for k evolutionary steps:

$$
M_{i j}{ }^{k}
$$

PAM Matrices

- There are different types of PAM Matrices, each one is used to compare 2 squences that are a given number of PAM units apart.
- For instance, PAM250 can be used to compare sequences that are 250 PAM units apart.
- An entry (i, j) of the PAM250 matrix contains the score of the pair of amminoacids (Ai, Aj); such score is proportional to the expected frequency of the substitution of Ai with $A j$ in two sequences that are 250 PAM units apart.

BLOSUM Matrices (Henikoff \&

Henikoff, 1992)

- Blocks Amino Acid Substitution Matrices = BLOSUM
- Based on the amminoacid substitutions observed in ~ 2000 conserved blocks of sequences
- These blocks are extracted from 500 protein families
- Segments belonging to each block are clustered according to their similarity. Every cluster is considered as a single sequence and the number of mutations in each column is computed

Example of BLOSUM Matrix computation

$\begin{aligned} & \mathrm{A} \\ & \cdots \quad A \\ & \hline \end{aligned}$
A
1
A
A
A
A

- 9 A and 1 S
- $36 \mathrm{~A} \rightarrow \mathrm{~A}\left(\mathrm{f}_{\mathrm{AA}}\right)$ and 9 $\mathrm{A} \rightarrow \mathrm{S}\left(\mathrm{f}_{\mathrm{AS}}\right)$
- 210 possible pairs of amminoacids
- The frequency of $\mathrm{A} \rightarrow \mathrm{A}$ is $\mathrm{q}_{\mathrm{AA}}=\mathrm{f}_{\mathrm{AA}} /\left(\mathrm{f}_{\mathrm{AA}}\right.$ $\left.+\mathrm{f}_{\mathrm{AS}}\right)=0.8$
- The frequency of $\mathrm{A} \rightarrow \mathrm{S}$ is $\mathrm{q}_{\mathrm{AS}}=\mathrm{f}_{\mathrm{AS}} /\left(\mathrm{f}_{\mathrm{AA}}\right.$ $\left.+\mathrm{f}_{\mathrm{AS}}\right)=0.2$

Example of BLOSUM Matrix computation

- The expected frequency that A is involved in a mutation is $\mathrm{p}_{\mathrm{A}}=\left(\mathrm{q}_{\mathrm{AA}}+\mathrm{q}_{\mathrm{AS}} / 2\right)=0.9$
- The expected frequency that S is involved in a mutation is $\mathrm{p}_{\mathrm{S}}=\left(\mathrm{q}_{\mathrm{AS}} / 2\right)=0.1$
- The expected frequency of a pair AA is $\mathrm{e}_{\mathrm{AA}}=$ $p_{A}{ }^{2}=0.81$
- The expected frequency of a pair AS is $\mathrm{e}_{\mathrm{AS}}=2$ $\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{S}}=0.18$

Example of BLOSUM Matrix

computation

- The score for $A A$ in the matrix is $q_{A A} / e_{A A}=0,99$ and for AS is $\mathrm{q}_{\mathrm{AS}} / \mathrm{e}_{\mathrm{AS}}=1.11$
- The values are converted in bits:

$$
\begin{aligned}
\mathrm{s}_{\mathrm{AA}} & =\log _{2}\left(\mathrm{q}_{\mathrm{AA}} / \mathrm{e}_{\mathrm{AA}}\right)=-0.04 \\
\mathrm{~S}_{\mathrm{AS}} & =\log _{2}\left(\mathrm{q}_{\mathrm{AS}} / \mathrm{e}_{\mathrm{AS}}\right)=0,30
\end{aligned}
$$

BLOSUM Matrix computation

- From every cluster a matrix is computed
- For instance, a cluster that contains sequences with $>60 \%$ identities results in a matrix called BLOSUM60
- The most frequently used matrix is BLOSUM62

The Hazard of Large Databases

- Define $p_{\varepsilon}=P(d(s, t)>\varepsilon \mid U)$
- This is the probability that two unrelated sequences will match with score $>\varepsilon$ by chance
- Assuming that they are independent of each other, and all are unrelated to s, we have

$$
P\left(\max _{t} d(s, t)>\varepsilon\right)=1-\left(1-p_{\varepsilon}\right)^{N} \approx 1-e^{-N p_{\varepsilon}}
$$

Local Matching

- Question: Which local alignment query is expected to give a higher score:
- To a short sequence
- To a long sequence?
- A local match can begin at any of the nm entries in the DP matrix.
- The score is the optimal of all these starting points.
- If all starting points were independent we would need to calculate the probability of attaining such a score in nm trails.

Score Significance-Fasta

- How meaningful is a score?
- Calculate distribution of scores and related scores

- Under reasonable assumptions the scores for un-gapped alignment behave according to the Extreme Value Distribution

Extreme Value Distribution (BLAST)

- We ask the following questions: Given a database of size m and a sequence of size n
- What is the expected number of hits with score at least S? This number is called an Escore

$$
E(S)=K m n e^{-\lambda S}
$$

- Notice this is a Poisson distribution.
- K corrects for the dependencies
- λ depends on the scoring matrix
- Doubling length of sequence doubles expectation
- Doubling score causes E to decrease exponentially

Blast P-value

- Recall Poisson distribution:
- Probability of finding no hits with a score $>=S$

$$
e^{-E}
$$

- Therefore probability of finding at least one hit with score $>=S$ is

$$
1-e^{-E}
$$

- This is called the P -value.

