Regulation of food consumption and energy surplus
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The Hypothalamus
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Ficure 15-4. Cross section of a rat’s hypothalmus at level of the ventromedial nucleus
(left) and of the same side in a horizontal plane, also at the level of the ventromedial
nucleus (right). Horsley-Clarke coordinates are superimposed. The feeding behavior
of rats with small bilaterally symmetrical lesions in each area is indicated. (From
Anand and Brobeck,1¢ courtesy of Yale J. Biol. Med.)
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The lipostatic hypothesis. Body weight and fat mass
stays constant by hypothalamic control. The hypothalamus
senses to the concentration of a metabolites in the
circulation and regulates the amount of energy surplus.

Kennedy, 1953
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OBESE, A NEW MUTATION IN THE HOUSE MOUSE*

ANN M. INgALLs, MARGARET M. Dickie anp G. D. SNELL
Roscoe B. Jackson Mewmorial Laboratory, Bar Harbor, Maine

THE FAT MOUSE GROWS UP
Figure 4

.. A—shows normal control and an obese mouse at 21 days of age. The former weighed 12
Zrams; the latter 16. B shows a normal and obese mouse at ten months of age, when the obese
mouse weighed 90 grams and the normal mouse 29 grams.

The ob mutant is characterized by massive obesity, marked
hyperphagia, mild diabetes and infertility

J Hered (1950)



db/db mutant mouse

The db (diabetes) mutant, like the ob/ob mouse, develops marked
obesity and hyperphagia. It also develops severe, life-shortening
diabetes.

Hummel (1966)



Parabiotic experiments

o A simple surgery
Share allke A veterinary surgeon will anaesthetize the animals, peel away a thin layer of skin along their sides
and stitch or staple the exposed surfaces together. Wound-healing processes join the bloodstreams

Parabiotic experiments, in which two animals through a capillary network, and in one to two weeks, the animals are pumping each other’s blood.
share a common bloodstream, were first

attempted in the 1860s. By connecting

animals with different qualities or conditions, MOUSE A . * MOUSE B
scientists can investigate how blood factors, Condition y/ Condition

such as cells, proteins or hormones, influence
health. In recent years, a few researchers have
looked at heterochronic (old and young)
mouse pairs to understand how young

blood helps to repair many tissues.

Publications on parabiosis
Parabiosis gained popularity during the 1960s

and 1970s, but eventually fell out of wide practice. ; IS
Sedentary N 7 Active

80

60 F Irradiated

Fluorescent

40
20
Mutant
0; I T T K

I [

| 1 |
1860 1950 1970 1990 2010




Obese

WV Food intake
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W Blood sugar
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The ob/ob mice lucks the lipostatic factor and cannot control food intake.

The db/db mice has the lipostatic factor but does not respond to it

because of a problem in the hypothalamic satiety center.
Coleman 1970
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A C57BL/6J oblob

Food intake (g)

Body mass (g)

0 4+

0 10 20 30
Day

B 5.9 leptin/day

O PBS

A No injection

Leptin had an affect on
food consumption and
body mass of ob/ob

but had no effect on db/db
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Congenital leptin deficiency
is associated with severe
early-onset obesity in humans
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Fig. 9 Leptin deficiency in humans responds to leptin treatment.
A 3-year-old boy with congenital leptin deficiency with severe
obesity (body weight 38 kg: BMI SD = 7.2) (left). On the right,
the same patient, after four vears of daily subcutaneous admin-
istration of recombinant leptin. Leptin treatment results in a
dramatic decrease in adiposity (body weight 29 kg: BMI SD =
0.9) and normalization of all metabolic abnormalities including
hyperinsulinaemia. Figure generously provided by Drs Sadaf
Farooqi and Stephen O'Rahilly.



Adult Obesity in the United States 1990
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Blood Leptin concentration correlates with body weight
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Potential contributors to leptin resistance in obesity

Deficient BBB crossing — High levels of triglicerides is thought to inhibit
transport of leptin through the BBB.

Hyperleptinemia - Chronic exposure to high levels of circulating leptin causes
leptin resistance, presumably by over-activating negative feedback regulators.

Inflammation - Low-grade, chronic inflammation is closely associated with
various metabolic disorders including obesity. High fat diet (HFD) feeding can
promote inflammation in the hypothalamus.

Hypothalamic ER stress - Observed in HFD-fed mice. Pharmacological ER
stress inducers impair leptin signaling, whereas treatments with chemical ER
chaperons relieve hypothalamic ER stress and decrease body weights in ob/ob
mice.

Front Med. 2013 Jun; 7(2): 207-222.



Leptin resistance in humbsters under long days
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Leptin receptor-expressing neurons in the arcuate
nucleus of the hypothalamus
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What is happening in
the hypothalamus?
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Figure 7-54. A neuroendocrine syndrome of adrenocorticotropic hor-
mone insufficiency, obesity, and red hair resulting from a null muta-
tion in the pro-opiomelanocortin gene. (Photo kindly provided by Dr.

A. Gruters, Berlin.)



Krude et al., 1998

G oo
- girl’s weight

03 6 9

12 12 24 30 36 42 48
age (months)

e2

72

62

52

42

32

22

12

2

boy's weight

—P97

—pP0

—P75

—P50

{—p25
1—r10

—P3

01234567 89101112131415161718

age (years)



Stress; neural input
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PROOPIOMELANOCORTIN (POMC)

N-Terminal Peptide | JP ACTH p-LPH
| %
Pituitary 16K Peptide ACTH (1-39) B-LPH (1-91)
Hypothalamus MSH a-MSH CLIP v-LPH p-Endorphin
and hair follicle Y (1-13) (18-39) (1-58) (61-91)
!
B-MSH

Figure 2. Schematic diagram of the POMC precursor molecule and the major peptide products which are derived from this
precursor by endoproteolytic cleavage. (JP = Joining peptide: LPH= Lipotropin: CLIP= corticotropin-like-intermediate lobe
peptide).



POMC functions in the stress response
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POMC functions in stress response, pigmentation
and food consumption

o-MSH = satiety signal
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A Deletion in the Canine POMC Gene |Is Associated with Weight and
Appetite in Obesity-Prone Labrador Retriever Dogs
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A Deletion in the Canine POMC Gene |Is Associated with Weight and
Appetite in Obesity-Prone Labrador Retriever Dogs
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Ectopic overexpression of the agouti gene (AY mutation)
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Agouti Agouti related protein (AgRP)
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Somewhat similar 3D structure
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POMC AgRP

Both AgRP and POMC are localized in the arcuate nucleus (AN) of the
hypothalamus.



AgRP Increases food intake
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Optogenetics
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Generation of action potential by light pulse

Channelrhodopsin

Halorhodopsin

The blue-light sensitive Channelrhodopsin and the yellow light-activated
chloride pump halorhodopsin together enable activation and silencing of
neural activity






How optogenetics works

A light-sensitive

protein from algae Take the gene for
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specific neurons in the brain
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Meurons communicate by “firing” This is an electrical
signal created by opening & closing ion channels.

S0 now you can cause
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With the right combination of neurons, you can activate an
entire brain circuit to control specific behaviors (like movement)
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AgRP neurocircuitry
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AgRP neurons innervate the pituitary

Table 1. Distribution and relative abundance of AGRP-

immunoreactive fibers and terminals in the rat CNS
Anatomical sites Agrp \
Compact - \_// :
Ventral part +++ Hypothalamic
. \ neurosecretory
Dorsal hypothalamic area ++ cells
. . a
Lateroanterior hypothalamic nucleus + i ‘ { N/
Lateral hypothalamic area +++ )
Ventrolateral hypothalamic nucleus ++ Median eminence %
Perifornical nucleus ++++ Capillary beds 0!
Posterior hypothalamic area + T—
Arcuate nucleus +++++ portsliesss
Median eminence, internal part T Anterior lobe
of pituitary
Median eminence, external part +
Medial tuberal nucleus +F g o
Supramammillary nucleus +

Bangol et al. 1999



Fat tissue

Energy

expenditure

Arcuate
nucleus

Melanocortin
receptor (MC4R)
(blocked by AgRP)

Ghrelin receptor

NPY/PYY3-36
receptor Y2R

Melanocortin
receptor (MC3R)

NPY receptor Y1R

Leptin receptor
or insulin receptor

TRENDS in Biotechnology




The Hypothalamus
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Ficure 15-4. Cross section of a rat’s hypothalmus at level of the ventromedial nucleus
(left) and of the same side in a horizontal plane, also at the level of the ventromedial
nucleus (right). Horsley-Clarke coordinates are superimposed. The feeding behavior
of rats with small bilaterally symmetrical lesions in each area is indicated. (From
Anand and Brobeck,1¢ courtesy of Yale J. Biol. Med.)



w

Summary

a-MSH acts as an agonist of MC4R. It reduces food intake and increases energy
expenditure.

Agouti protein is naturally expressed in skin tissue and regulates pigmentation.
Its overexpression in brain tissue leads to obesity due to antagonistic effect on
MC4R.

Agouti related peptide (AgRP) is expressed in the hypothalamus.

AgRP expression is elevated when energy stores are low (for example- low
leptin).

AgRP acts as an antagonist of MC4R. It reduces energy expenditure and
increases food consumption.

Activation of AgRP neurons leads to rapid feeding behavior while their ablation
cause self starvation.



« What will be the phenotype of AQRP KO mice?

« What will be the phenotypes of cell-type specific KOs of
the leptin receptor in mice?
One in hypothalamic AgRP neurons
One in hypothalamic POMC neurons

* A mice line was made by crossing ob/+ and db/+.
Offspring that are ob/+,db/+ were collected and breed.
What will be the result? What % of fat mice will there be?



