VIROLOGY

Engineering Viral Genomes: Retrovirus Vectors

Family *Retroviridae*

Genus	Examples	Features
Alpharetrovirus	Rous sarcoma virus, Avian leukosis virus	oncogene present in many members
Betaretrovitrus	Mouse mammary tumor virus	mammary carcinomas
Gammaretrovirus	Moloney murine leukemia virus, Feline leukemia virus	oncogene present in many members
Deltaretrovirus	Human T-cell lymphotrophic viruses (1, 2 and 5), bovine leukemia virus	T- and B-cell lymphomas
Epsilonretrovirus	Walleye dermal sarcoma virus	sarcomas
Lentivirus	Human immunodeficiency virus (HIV-1, HV-2), simian immunodeficiency virus (SIV)	AIDS
Spumavirus	simian foamy virus, human foamy virus	benign

Morphology of Retroviruses

HIV-1

HTLV-1

Structure of a Retrovirus

Genome expression

B Simple retrovirus (ALV)

Retrovirus replicative cycle

The reverse transcription process -1

The reverse transcription process -2

Second template exchange is facilitated by annealing of PBS sequences

Characteristics of retroviral integration

Translation strategies of Retroviruses The synthesis of multiple proteins

3'

Ribosomal frameshifting:the Gag-Pol fusion

Assembly of a retrovirus from polyprotein precursors

Sequences important in packaging of retroviral genomes

Viral vectors

Virus	Insert size	Integration	Duration of expression	Advantages	Disadvantages
Adeno-associated virus	~4.5–9 (?) kb	Low efficiency	Long	Nonpathogenic, episomal, infects nondividing cells	Immunogenic, toxicity
Adenovirus	2–38 kb	No	Short	Efficient gene delivery	Transient, immunogenic
Alphavirus	~5 kb	No	Short	Broad host range, high-level expression	Virulence
Herpes simplex virus	~30 kb	No	Long in central nervous system, short elsewhere	Neurotropic, large capacity	Virulence, persistence in neurons
Influenza virus	Unknown	No	Short	Strong immune response	Virulence
Lentivirus	7–18 kb	Yes	Long	Stable integration; infects nondividing and terminally differentiated mammalian cells	Insertional mutagenesis
Poliovirus	~300 bp for helper-free virus; ~3 kb for defective virus	No	Short	Excellent mucosal immunity	Limited capacity, reversion to neurovirulence
Retrovirus	1–7.5 kb	Yes	Shorter than formerly believed	Stable integration	May rearrange genome, insertional mutagenesis, require cell division
Rhabdovirus	Unknown	No	Short	High-level expression, rapid cell killing	Virulence, highly cytopathic
Vaccinia virus	At least ~25 kb, probably ~75–100 kb	No	Short	Wide host range, ease of isolation, large capacity, high-level expression	Transient, immunogenic

Viral vectors

Virus	Insert size	Integration	Duration of expression	Advantages	Disadvantages
Adeno-associated virus	~4.5–9 (?) kb	Low efficiency	Long	Nonpathogenic, episomal, infects nondividing cells	Immunogenic, toxicity
Adenovirus	2–38 kb	No	Short	Efficient gene delivery	Transient, immunogenic
Alphavirus	~5 kb	No	Short	Broad host range, high-level expression	Virulence
Herpes simplex virus	~30 kb	No	Long in central nervous system, short elsewhere	Neurotropic, large capacity	Virulence, persistence in neurons
Influenza virus	Unknown	No	Short	Strong immune response	Virulence
Lentivirus	7–18 kb	Yes	Long	Stable integration; infects nondividing and terminally differentiated mammalian cells	Insertional mutagenesis
Poliovirus	~300 bp for helper-free virus; ~3 kb for defective virus	No	Short	Excellent mucosal immunity	Limited capacity, reversion to neurovirulence
Retrovirus	1–7.5 kb	Yes	Shorter than formerly believed	Stable integration	May rearrange genome, insertional mutagenesis, require cell division
Rhabdovirus	Unknown	No	Short	High-level expression, rapid cell killing	Virulence, highly cytopathic
Vaccinia virus	At least ~25 kb, probably ~75–100 kb	No	Short	Wide host range, ease of isolation, large capacity, high-level expression	Transient, immunogenic

Favorable Features of Retroviruses as Vectors

- •Well characterized
- •Easily to manipulate (genomes 7-9 kb)
- •They require 3 trans (gag, pol, env) and 7 major cis-active control elements (U3, R, U5, PBS, SD, Ψ , SA) in order to replicate
- •Stability of recombinants vectors (plasmids)
- •High efficiency of gene transfer
- Most are replication-defective
- •Stable and precise integration of the transgene
- Low immunogenicity
- •Can be pseudotyped to infect a broad range of cells

Retrovirus as vectors

Replication-incompetent vectors

 They bear deletions of some or all of the viral genes

-They retain *cis*-acting viral sequences necessary for transmission (U3, R, U5, PBS, SD, Ψ , SA)

-They need to be propagated in "packaging" cell lines that provide in *trans* gag, pol, env

•Replication-competent vectors (RCR) -Avian vectors (up to 2 kb inserts)

Replication-incompetent vectors

Replication competent intact virus

Retroviral vectors

Retroviral vectors

1. Production of Recombinant Retrovirus in the Packaging Cell

2. Infection of a Target cell and Expression by a Replication-Incompetent Retrovirus Vector

Production of recombinant retroviral stocks by stable and transient producer cell lines

Packaging cell: produces viral proteins from stably integrated genes

Development of retroviral vector design

C nonsplicing retroviral vector with internal promoter

Retroviral expression vectors

GCGGCCCCAAGCTTGTTAACATCGATAAAATA *Hin*d III *Hpa* I *Cla* I

GCGCCGGAATTCGTTAACTCGAGGATCCGGCTGTG *Eco*R | *Hpa* | *Xho* | *Bam*H |

Retroviral expression vectors

GGAATTC	GTTAAC	TCGA	GATCCA	CTAGTAACGGCCGC	AGAATTCG
<i>Eco</i> R I	Hpa I	Xho I	BamH I		EcoR I

CCCCTCGAG	GAAGCTTG	TCGACGGATCC	GAATTC
Xho I	Hind III	BamH I	EcoR I

Safety-modified retrovirus vectors (SIN vectors)

Tropism of Retrovirus Vectors

Retrovirus tropism is determined at three levels:

- 1) Viral envelope proteins (gpSU);
- 2) Nuclear translocation and integration -defined by structural features of p30^{CA}
- 3) Transcriptional activity of the LTR in the transfected cell

- MLV LTR is active in most mammalian cell types
Retroviridae host-cell receptors and co-receptors

Human immunodeficiency virus type 1	CD4	Ig-like	Chemokine receptors (Ccr5, Cxcr4, Ccr3)
	Galactosylceramide	Glycolipid	
Human immunodeficiency virus type 2	CD4	Ig-like	Chemokine receptors
	Cxcr4	7-transmembrane superfamily	
Simian immunodeficiency virus	CD4	Ig-like	Chemokine receptors
Gibbon ape leukemia virus	Glvrl	Sodium-dependent phosphate transport protein	A
Feline leukemia virus B	Glvr1	Sodium-dependent phosphate transport protein	
Amphotropic murine leukemia virus	Ram-1	Sodium-dependent phosphate transport protein	A
Ecotropic murine leukemia virus	Cat	Cationic amino acid transport protein	E
Subgroup A avian leukosis and sarcoma virus	Tva	Low-density lipoprotein receptor protein family	
Subgroup B and D avian leukosis and sarcoma viruses	Carl	Tnf receptor family protein superfamily	
Bovine leukemia virus	BLVRcp 1	Unknown	
Feline immunodeficiency virus	Cxcr4	7-transmembrane superfamily	
Visna virus	Major histocompatibility complex class II molecule	Ig-like	

The envelope determines which cells the retrovirus enter

Host-range of MoMuLV-derived Vectors

•Ecotropic glycoprotein, gp70, allows infection of rat and mouse cells

•Amphotropic glycoprotein gp70 endows a murine virus with a very broad host range (mouse, human, chicken, dog, cat, mink cells)

•**Polytropic** receptors can be utilized for retrovirus entry. Pseudotyping the retroviral envelope with the VSV G protein confers a host range capable to infect mammalian, fish, frogs and insect cells

Host-range of Retroviral Vectors

Vector neeudotune	Cells that can be transduced			
vector pseudotype –	Mouse	Human		
Ecotropic	Yes	No		
Amphotropic	Yes	Yes		
GALV	No	Yes		
VSV G	Yes	Yes		
RD114	No	Yes		
10A1	Yes	Yes		

Disadvantages of Retrovirus Transduction System

- Post-mitotic cells cannot be transduced
- Unable to transduce large (>11kb) DNA fragments
- Random integration and genome rearrangement (risk of insertional activation of cellular genes)

Retrovirus vectors - a research lab application: generation of a GFP-expressing retroviral vector by using the Retromax system

Retromax system: choice of vectors

Retromax system: choice of packaging vectors

Ecotropic mouse and rat cells only (not human) (usually (MoMuLV) Amphotropic most mammalian cells (from 4070 MulV) (no hamster) many mammalian cells Gibbon Ape leukemia virus (GALV) (including hamster) 10A1 (MuLV) most mammalian cells (including hamster)

Retromax system: choice of packaging vectors

The **pCL-Eco** packaging vector. The gene coding for **env** was replaced with env gene from different MULV strains (4070A and 10A1) to create **pCL-Ampho** and **pCL-10A1** packaging vectors

Retromax system: pCL packaging vectors

Retromax system: outline of the procedure

Retromax system: construction of pCLXSN-GFP vectors

GFP exp in infected HUVECs after 1 wk of G418 selection

Retrovirus Vectors and Gene Therapy

Gene therapy: for what?

The Journal of Gene Medicine, © 2017 John Wiley (

Provided by the Journal of Gene Medicine

Gene therapy : main viral vectors systems

Viral vector	Description	Advantages	Limitations	Applications
Adenovirus (Ad)	Icosahedric, non- enveloped, genome of 36 kb, non-integrative	Easy propagation in high titers, infection of most cell types; insertion of large DNA frag- ments	High immunogenicity, in- ducing important cellular and humoral immune responses that can be fatal	Therapies that require tran- sient gene expression: cancer therapy, angiogenesis induc- tion and DNA vaccine pro- duction (due to its inflamma- tory and immunogenic properties)
Retroviruses (Retrovirus and Lentivirus)	Integrative in proliferative (retrovirus and lentivirus) and quiescent (lentivirus) cells	Low immunogenicity, possi- bility of insertion of large DNA fragments (up to 8 kb)	Insertional mutagenesis	Genetic diseases of T cells and hematological diseases (Retrovirus), HIV/AIDS
Adeno-associated virus (AAV)	Icosahedric, non- enveloped, single-stranded DNA, genome of 4.7 kb, integrative	Low immunogenicity, easy propagation in high titers, infection of most of cell types, long-term gene expression	Limited capacity for inser- tion of DNA fragments	Genetic diseases, tumors, neurological, ocular and car- diovascular diseases, others

The Journal of Gene Medicine, © 2017 John Wiley and Sons Ltd

www.wiley.co.uk/genmed/clinical

Gene Therapy Clinical Trials Worldwide

Provided by the Journal of Gene Medicine

Retroviruses as vectors for delivering gene therapy

Disease	Defect	Incidence	Viral vector
Severe combined immunodeficiency	Adenosine deaminase (25% of patients)	Rare, <1 in 10^5 live births	Gammaretrovirus
	Common cytokine receptor γ chain (X-linked)	1 in 50,000–100,000 live births	Self-inactivating gammaretrovirus
Lipoprotein lipase deficiency	Lipoprotein lipase	Rare, 1–2 in 10 ⁶ live births	$AAV^{a,b}$
Hemophilia B	Factor IX deficiency	1 in 30,000 males	AAV
Hemoglobinopathies and thalassemias	Defects in α - or β -globin gene	1 in 600 in specific ethnic groups	Self-inactivating lentivirus
α_1 -Antitrypsin deficiency (inherited emphysema, liver disease)	α_1 -Antitrypsin not produced	1 in 3,500	AAV
Retinal degenerative disease, Leber's congenital amaurosis (LCA)	Retinal pigment epithelium- specific 65-kDa protein	$<$ 10% of LCA cases (LCA, \sim 1 in 80,000 live births)	AAV
X-linked adrenoleukodystrophy	ABCD1 transporter	1 in 20,000–50,000 live births	Self-inactivating lentivirus
Wiskott-Aldrich syndrome (eczema- thrombocytopenia-immunodeficiency syndrome)	Was protein	1–10 in 10 ⁶ males	Self-inactivating lentivirus

Retrovirus for gene therapy of ADA-SCID

David Vetter: the first «bubble boy», 1971-1983

- Deficiency of *adenosine deaminase* (*ADA*), an enzyme of purine metabolism.
- Mutations of the ADA gene cause profound lymphopenia (T, B, and NK cells).
- Untreated ADA-SCID is a fatal disorder.
- To restore ADA activity and reconstitute protective immunity: enzyme replacement therapy (ERT); allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy (GT) with autologous genecorrected hematopoietic stem cells (HSC).

Retrovirus as a therapeutical agent for ADA- SCID

Leading Edge **Bench to Bedside**

Cell

Gene Therapy for "Bubble Boy" Disease

Jonathan Hoggatt

Day 0:

CD34+ cells and

Day -3 to -1:

addition

Cancer Center and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA Correspondence: hoggatt.jonathan@mgh.harvard.edu http://dx.doi.org/10.1016/j.cell.2016.06.049

NAME

Day -4: Strimvelis (GSK2696273): international nonproprietary name: Wash transduced Harvest bone autologous CD34+ enriched cell fraction that contains CD34+ cells transduced with retroviral vector that encodes for the human ADA infuse into patient cDNA sequence APPROVED FOR Treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) in patients who cannot be treated by a bone-marrow transplant because they do not have a suitable, matched, related donor Three daily rounds of retroviral supernatant TYPE Gene therapy; autologous CD34+ enriched cell fraction that contains CD34+ cells transduced with retroviral vector (LXSN vector) that

Day -4: Isolate CD34⁺ cells encodes for the human ADA cDNA sequence CELLULAR TARGETS CD34+ hematopoietic cells

EFFECTS ON TARGETS Adenosine deaminase (ADA) deficiency results in the Beplaces defective adenosine deaminase in immune cells accumulation of toxic metabolites that destroy the DEVELOPED BY GlaxoSmithKline, MolMed, San Raffaele Telethon Institute for Gene Therapy

immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor.

Stimulate with cytokines

(SCF, FIt3, TPO, IL-3)

Disease frequency

Treatments to date

HLA-matched related donors

2002 2009 Report on pilot study with two Long-term follow up patients given gene therapy with (median 4.0 years) enhanced transduction protocol, reported for 10 patients 1972 1990 without enzyme replacement therapy with 100% survival rate ADA deficiency discovered First ever gene therapy in two SCID patients performed at NIH in 2000 2016 ADA-SCID patient First patient treated Strimvelis approved with Strimvelis protocol in Europe for ADA-SCID

References for further reading are available with this article online: www.cell.com/cell/fulltext/S0092-8674(16)30857-1

Retroviruses as vectors: development of Strimvelis

Figure 1. Schematic representation of the key scientific and regulatory milestones in the clinical development of ADA-SCID gene therapy, leading to its approval in the EU.

EMA approved gene therapy for ADA-

EMBO Molecular Medicine Vol 9 | No 6 | 2017

Gene therapy for ADA-SCID, the first marketing approval of an *ex vivo* gene therapy in Europe: paving the road for the

next generation of advanced therapy medicinal products

9

OPEN ACCESS EMBO

Molecular Medicine

Commentary

VIROLOGY

Engineering Viral Genomes: Lentivirus Vectors

Viral vectors

Virus	Insert size	Integration	Duration of expression	Advantages	Disadvantages
Adeno-associated virus	~4.5–9 (?) kb	Low efficiency	Long	Nonpathogenic, episomal, infects nondividing cells	Immunogenic, toxicity
Adenovirus	2–38 kb	No	Short	Efficient gene delivery	Transient, immunogenic
Alphavirus	~5 kb	No	Short	Broad host range, high-level expression	Virulence
Herpes simplex virus	~30 kb	No	Long in central nervous system, short elsewhere	Neurotropic, large capacity	Virulence, persistence in neurons
Influenza virus	Unknown	No	Short	Strong immune response	Virulence
Lentivirus	7–18 kb	Yes	Long	Stable integration; infects nondividing and terminally differentiated mammalian cells	Insertional mutagenesis
Poliovirus	~300 bp for helper-free virus; ~3 kb for defective virus	No	Short	Excellent mucosal immunity	Limited capacity, reversion to neurovirulence
Retrovirus	1–7.5 kb	Yes	Shorter than formerly believed	Stable integration	May rearrange genome, insertional mutagenesis, require cell division
Rhabdovirus	Unknown	No	Short	High-level expression, rapid cell killing	Virulence, highly cytopathic
Vaccinia virus	At least ~25 kb, probably ~75–100 kb	No	Short	Wide host range, ease of isolation, large capacity, high-level expression	Transient, immunogenic

HIV

B Simple retrovirus (ALV)

Complex retrovirus (HIV-I)

LTR

nef

U3

9.1 kb

~4.3 kb

~1.8 kb

Genome organization of HIV-1 and HIV-2

HIV receptor and coreceptors

HIV attachment and entry into cells

HIV-1 LTR

HIV gene expression

R - terminal redundancy U5 - unique 5' region TAR - tat responsiveness RRE - rev response element

HIV auxiliary proteins

Protein ^b	Size (kDa)	Function	Location
Regulatory			
Tat	14	Transactivation; binds TAR to facilitate initiation and elongation of viral transcription	Primarily in cell nucleus
Rev	19	Regulation of viral mRNA expression; binds RRE and facilitates nuclear export of unspliced or singly spliced RNAs	Primarily in cell nucleus
Accessory			
Nef	27	Pleiotropic, can increase or decrease virus replication; down-regulates MHC-I and the CD4 receptor; influences T-cell activation; enhances virion infectivity	Cell cytoplasm, plasma membrane
Vif	23	Increases virus infectivity; helps in virion assembly and in viral DNA synthesis	Cell cytoplasm
Vpr	15	Helps in virus replication; causes G ₂ arrest; facilitates nuclear entry of preintegration complex	Virion
Vpu ^c	16	Helps in virus release; disrupts Env-CD4 complexes; causes CD4 degradation	Integral cell membrane protein
Vpx ^d	15	Nuclear entry of preintegration complexes	Virion

/ gend		gap vif vp	env rev rev rev tat nef LTR
		GENE	
	gag	Group-specific antigen	gag → MA, CA, SP1, NC, SP2, P6
Essential	pol	Polymerase	pol → RT, RNase H, IN, PR
Genes &	env	Envelope	gp160 → gp120, gp41
Regulatory Elements	tat	HIV Transactivator	Positive regulator of transcription
	rev	Regulator of expression of virion proteins	Important for synthesis of major viral proteins and essential for viral replication
Accessory	vif	Viral infectivity	Required for infectivity in some cell types
Genes	vpr	Virus protein R	Nuclear import of pre-integration complex and host cell cycle arrest
	vpu	Virus protein U	Proteasomal degradation of CD44 and release of virions from infected cells
	nef	Negative factor	Role in apoptosis and key in increasing virus infectivity
	-		

HIV Tat: features and functions

- 14 kDa protein encodes by a multispliced mRNA
- Binds the TAR element and stabilizes mRNA conformation
- Binds cyclin T1+CDK9 and stimulates the kinase activity of TFIIH
- Stimulates phosphorylation of RNA pol II CTD and increase its processivity
- Allows the transcription of long mRNA (e.g., gag-pol full lenght mRNA)
- Stimulates production of viral RNA as much as 100 fold

HIV TRASCRIPTION - Tat and TAR

HIV TRASCRIPTION - Tat and TAR

Stimulation of transcription of HIV-1 proviral DNA by Tat

HIV TRANSCRIPTION mRNA splicing

HIV Rev: features and functions

- 19 kDa protein encodes by a multispliced mRNA
- Binds the RRE element of HIV mRNAs
- Allows export to cytoplasm of RRE-containing mRNAS from which virion structural proteins and enzymes are made. It interacts with exportin-1 and Ran-GTP
- Allows expression of proteins encoded by unspliced mRNAs (gag-pol) o single-spliced (Vif,Vpr, Vpu,Env)
- Determines a shift in HIV gene expression (regulatory protein -----> structural proteins)
- Absent in simple Retroviruses in which full-lenght mRNAs contain a constitutive export sequences

Regulation of export of HIV-1 mRNAs by the viral Rev protein

Prior to Rev synthesis only fully spliced mRNA (2-kb class) are exported in the cytoplasm. When Rev is made it enters the nucleus and binds the RRE in unspliced (9-kb class) and singly-spliced (4-

kb class) viral mRNAs. This interaction induces export to cytoplasm of RRE-containing mRNAs, from which virion structural proteins and enzymes are made.

Binding of Rev protein to the rev-responsive element (RRE)

Model of export HIV-1 mRNAs containing introns by the viral Rev protein

HIV auxiliary proteins

Protein ^b	Size (kDa)	Function	Location
Regulatory			
Tat	14	Stimulation of transcription; binds TAR to facilitate initiation and elongation of viral transcription	Primarily in cell nucleus
Rev	19	Regulation of viral mRNA production; binds RRE and facilitates nuclear export of unspliced or singly spliced RNAs	Primarily in cell nucleus
Accessory			
Nef	27	Pleiotropic, can increase or decrease virus replication; reduces expression of MHC class I and the CD4 receptor; affects T-cell activation; enhances virion infectivity	Cell cytoplasm, plasma membrane
Vif	23	Increases virus infectivity; affects virion assembly and/or viral DNA synthesis	Cell cytoplasm
Vpr	15	Causes G ₂ arrest; facilitates nuclear entry of preintegration complex	Virion
Vpu ^c	16	Affects virus release; disrupts Env-CD4 complexes; CD4 degradation	Integral cell membrane protein
Vpx ^d	15	Nuclear entry of preintegration complexes	Virion

HIV egress by budding at the plasma membrane

Favorable Features of Lentivirus Vectors

•HIV-1 integrates its DNA and completes a replication cycle in fully differentiated, non dividing cells (macrophages).

•So, this virus must have a mechanims for the active transport of preintegration complexes into the nucleus.

•Vpr and a minor, phosphorylated, form of the matrix (MA/ p17) protein direct nuclear import of the HIV-1 preintegration complex.

•Nuclear localization signals have been found in the IN protein of HIV-1

Retrovirus and Lentivirus vectors

Viral System	— Transient expression —		Stable expression			
	Dividing Cells	Non Dividing Cells	Dividing Cells	Neuronal Cells	Drug or Growth Arrested Cells	Contact Inhibited Cells
Adenovirus	•	•				
Retrovirus	•		•			
Lentivirus	•	•	•	•	•	•

Lentiviral Vector Construction

Several components are essential to generate a lentiviral vector, including:

- 1. A lentiviral construct: with LTRs and the Packaging Signal Psi (Ψ);
- 2. The transgene of interest: e.g., a cDNA, miRNA, or shRNA cloned into the lentiviral construct;
- 3. Helper plasmids: packaging and envelope plasmids;
- 4. A packaging cell line: the "factory" in which the viral vector production takes place. The lentiviral construct with the transgene and helper plasmids are transiently transfected into a packaging cell line such as HEK-293T cells, where they get assembled.

Since Lentiviruses have high mutation and recombination rates, so the likelihood that HIV could self-replicate and be produced during vector manufacturing by recombination is a serious safety concern. To reduce that probability, in a safety-modified lentiviral vector.

Essential genes must be separated into different plasmids, and the four viral accessory genes (vif, vpr, vpu and nef) deleted.

Thus, multiple recombination events would be necessary to reconstitute a **Replication-Competent Lentivirus (RCL)**.

Lentiviral Vector Generations Summary Table

	First Generation	Second Generation	Third Generation
Plasmids	3	3	4
Deletion in 3' LTR - SIN	No	No	Yes
Packaging plasmids with HIV genes	1	1	2
Accessory genes: vif, vpr, vpu, nef	All present	All absent	All absent
tat and rev genes	On a single packaging plasmid	On a single packaging plasmid	tat is absent; rev on a separate plasmid
gag and pol genes	Same plasmid	Same plasmid	Same plasmid
Recombination events needed to generate Replication Competent Lentiviruses (RCL)*	2 recombinations	3 recombinations	4 recombinations between plasmids without homology & must pick a promoter to complement SIN deletion

First-generation: includes a packaging system with all HIV genes except for the env gene (usually heterologous) that is included in another vector.

* The risk of formation of RCLs exists not only during lentiviral vector production, but also during experiments involving materials infected with wild-type HIV. Recombination between the lentiviral vector and HIV can lead to the generation of new viruses with unknown safety consequences. For that reason, experiments involving human materials not screened for HIV pose an enhanced risk for laboratory workers. **Second-generation:** Researchers discovered that the four HIV accessory genes - vif, vpr, vpu and nef - were not required for HIV replication in immortalized cell lines. This led to the engineering of second-generation vectors. In this system, the four accessory genes were eliminated leaving the gag and pol reading frames and the tat and rev genes. In general, lentiviral vectors with a wild-type 5' LTR need the 2nd generation packaging system because they need tat for activation

* The risk of formation of RCLs exists not only during lentiviral vector production, but also during experiments involving materials infected with wild-type HIV. Recombination between the lentiviral vector and HIV can lead to the generation of new viruses with unknown safety consequences. For that reason, experiments involving human materials not screened for HIV pose an enhanced risk for laboratory workers. **Third-generation / Self-Inactivating (SIN):** In a third-generation vector, the 3' LTR is modified, with tat being eliminated and rev provided in a separate plasmid. Since the HIV promoter in the 5' LTR depends on tat, a vector without tat needs to have its wild-type promoter replaced with a heterologous enhancer/promoter to ensure transcription. Such promoter could be either viral (like CMV) or cellular (like EF1- α).

* The risk of formation of RCLs exists not only during lentiviral vector production, but also during experiments involving materials infected with wild-type HIV. Recombination between the lentiviral vector and HIV can lead to the generation of new viruses with unknown safety consequences. For that reason, experiments involving human materials not screened for HIV pose an enhanced risk for laboratory workers.

Structure of a SIN HIV-1 based vector

HIV-1 genome

Development of self-inactivating vectors or SIN vectors

Lentiviral SIN vectors

Basic HIV-1 based sin vector.

Basic HIV-1 based sin vector with the GFP marker driven by pCMV.

A 3rd generation Lentiviral vector system

Flow-chart production of a recombinant lentiviral vector

Pros and Cons of Lentiviral Vectors

ADVANTAGES	DISADVANTAGES	
Can carry large transgenes (up to 8 Kb)	Potential for generation of RCL	
Efficient gene transfer	Potential for insertional mutagenesis: Even replication-incompetent lentiviruses with human tropism are able to infect human cells and integrate their genome into the	
Infects dividing and non-dividing cells		
No immunogenic proteins generated	host cells → risk in case of accidental	
Stable integration into the host genome and stable expression of the transgene		

Biosafety Considerations for Research Work with Lentiviral Vectors

VRX496 Anti-sense Mechanism Deletes Env

The first clinical trial of a lentiviral vector highlights the promise of this new class of gene-therapy vector

VIRXSYS

Delivering the promise of genetic medicine

Lexgenleucel-T (VRX496):

Autologous CD4+ Cells Transduced with a Lentiviral Vector Encoding a 937 Base Antisense Sequence Targeting HIV Envelope

VRX496 Anti-HIV T Cell Transplantation

Lexgenleucel-T (VRX496):

Autologous CD4+ Cells Transduced with a Lentiviral Vector Encoding a 937 Base Antisense Sequence Targeting HIV Envelope

VRX496 Anti-HIV T Cell Transplantation

Conclusions from Clinical Trials

- No safety issues
- Reduced viral in treatment failures
- Reduced viral infectivity
- Sustained increases in CD4 counts in 10B bolus
- Additional clinical trials being developed

VRX496 Clinical Studies – Summary

Clinical Trial	Infusion Schedule	Cell Dose	Status
$\label{eq:phase I} \begin{array}{l} \underline{Phase \ I} \\ \mbox{Failed} \geq 2 \ \mbox{HAART} \\ \mbox{CD4} \geq 150; \ \mbox{VL} \geq 5000 \end{array}$	Single dose	~10 billion	Completed**
<u>Phase II</u> Failed ≥1 HAART	Repeat 4 or 8 doses	10 billion per dose	Completed
CD4 ≥150 VL ≥ 5000	Single dose	10 billion 20 billion 30 billion	Ongoing
$\label{eq:phase_I/II} \frac{Phase~I/II}{Virologically~Controlled} \\ CD4 \geq 350;~VL \leq 50 \\ \end{array}$	Repeated 6 doses	10 billion per dose	Ongoing

• U.S. multi-center study: University of Pennsylvania, Stanford University, University of Kentucky, Jacobi Medical Center, Mercy Medical Center, Circle Medical Center

** PNAS 103:17372-17377. 2006