VIROLOGY

Research, Development and Applications of Antiviral Agents 1

EPIDEMIOLOGY OF VIRAL DISEASES Prevention and control

Vaccines have been very successful in preventing some viral diseases; however, they provide modest to no therapeutic effect in individuals that are already infected

EPIDEMIOLOGY OF VIRAL DISEASES Prevention and control

Consequently, the second arm of antiviral defense has been the development and use of molecules capable of preventing an infection or stopping it once started.

> Antiviral drugs: small molecules that block virus replication

EPIDEMIOLOGY OF VIRAL DISEASES
Prevention and control

Antiviral drugs: small molecules that block virus replication

However, despite 50 years of research, our arsenal of antiviral drugs remains dangerously small.

Only less than 50 antiviral drugs are available on the market

Most against HIV, HBV, HCV, Herpesviruses (persistent infections)

THE CONUNDRUM OF ANTIVIRAL CHEMOTHERAPY: So Much Knowledge, So Few Antivirals

- Safety is the overriding concern in anviral drug discovery! Compounds interfering with virus growth often have adverse severe effects on the host:
 - Side effects are common (unacceptable)
 - Every step in viral replicative cycle engages host functions

• No broad-spectrum of antiviral agents are currently available

THE CONUNDRUM OF ANTIVIRAL CHEMOTHERAPY: So Much Knowledge, So Few Antivirals

- Another serious problem for antiviral discovery:
 - Many acute infections are of short duration and by the time the indiduals feel ill the virus is no longer replicating and indeed may have already been cleared from the host. Thus, too late to impact clinical disease.
 - Antivirals drugs for these viruses must be given early in infection or prophylactically to populations at risk.
 - Safety issues: giving drugs to healthy people not wise
- The lack of rapid diagnostic tests has hampered development of antiviral drugs

• Many medically important viruses are difficult or impossible to grow in laboratory (eg. HBV, HPV), too dangerous (Ebola).

THE CONUNDRUM OF ANTIVIRAL CHEMOTHERAPY: So Much Knowledge, So Few Antivirals

An unappreciated reason may be the most important

- Antiviral compounds must be virtually 100% efficient in blocking virus growth.
- A compound must block virus replication completely!
- So, it must be extremely potent!!!
- Partially inhibition is not acceptable for an antiviral: even a modest viral replication in the presence of a drug provides the opportunity that drug-resistant mutants arise.
- Makes drug discovery expensive.

The problem of viral resistances **REPLICATION=MUTATION**

If the administered drug dose does not completely suppresses viral replication, mutant viruses will be selected

ANTIVIRAL RESEARCH HISTORY

- The first modest search for antiviral drugs occurred in 1950s.
 - Chemists looked at derivatives of the sulfonamide antibiotics.
 - Synthesis of thiosemicarbazones actve against poxviruses.
 - Smallpox was still a major threat after WWII.
- 1960s and 1970s: "blind screening" programs to find chemicals with antiviral activity spurred on by successes in the treatment of bacterial infections with antibiotics.
- No attempt to focus discovery on a virus or a virus-specific mechanism
- Random chemicals and natural product mixtures tested for ability to block replication of a variety of viruses in cell culture systems.
- Considerable effort, very little success: one exception!
- Symmetrel (Amantadine) approved late 1960s for Influenza A virus infections. Mechanism of action discovered only in 1990s.

Antiviral discovery today

Modern antiviral discovery

The advent of modern molecular virology, recombinant DNA technology and sophisticated chemistry make possible the <u>TARGETED DISCOVERY</u>

- Essential viral genes cloned, expressed in genetically tractable organisms, purified, and analyzed in atomic detail.
- Life cycles of most viruses known, targets for intervention can be generalized.
- Modern technology allows inhibitors to be found even for viruses that cannot be propagated in cell culture

Blind screening III III Is no longer attractive

Antiviral discovery today

Modern antiviral discovery

- Mechanism-based screens
- Cell-based assays
- Combinatorial chemistry
- High-throughput screens
- Computational Approaches:
 - Structure-assisted drug design
 - Genome sequencing, proteomic analyses
 - In silico discovery via Virtual Screening

Search and development of antiviral drugs

The path of modern antiviral drug discovery

R&D of antiviral discovery: antiviral drugs are expensive to discovery, develop, and bring to market

Staircase of drug discovery: it can takes 5 to 10 years after the initial lead is found to get a drug to the market and it may cost 100M\$ to 500M\$

R&D of antiviral discovery: antiviral drugs are expensive to discovery, develop, and bring to market

De novo drug discovery and development

- Long process, extimated time from 10 to 17 yrs
- •Low overall probability of success: <10%;

а

 Cost-expensive process: high ratio failed compounds/successfull compounds.

R&D of antiviral discovery:preclinical and clinical testing

R&D of antiviral discovery: costs and risks

Investment per phase of drug discovery and development for one successful drug (USD millions)

G.M. Milne, Jr., Annual Reports in Medicinal Chemistry, 2003, 38, 383-396

Search and development of antiviral drugs

Table 19.8 Key points for drug hunters seeking commer-cially viable antiviral drugs

Virology issues

Must obtain proof of principle as soon as possible.

- What is the molecular mechanism? Does the drug work in tissue culture and in animal models as predicted?
- Compound should block viral spread early to limit cytopathology and host cytokine/inflammatory response.
- Drug must block replication completely and must not make an infection "persistent" by slow replication and spread.
 Resistance to the antiviral drug must be manageable.
- Resistance mutations arise when any virus is permitted to repli-

Business issues

- Compound should be safe with no side effects.
- Compound should be inexpensive to manufacture.
- Compound should be easy to formulate and deliver.
- A pill to be swallowed is much preferred over injection. Compound must satisfy an unmet medical need.
- That is, it must be better than any competitive drug or, better yet, have no competition.

Ultimately, a profit should be possible.

• The market should be large enough to allow a profit to be made.

Search and development of antiviral drugs

Blind screening III III Is no longer attractive

Modern antiviral discovery

- Mechanism-based screens
- Cell-based assays
- Combinatorial chemistry
- High-throughput screens
- Computational Approaches:
 - Structure-assisted drug design
 - Genome sequencing, proteomic analyses
 - In silico discovery via Virtual Screening

Mechanism-based assay to select inhibitors of a viral protease

Mechanism-based assay to select inhibitors of a viral protease

Analytical Biochemistry 293, 239–245 (2001) doi:10.1006/abio.2001.5144, available online at http://www.idealibrary.com on IDEAL®

An example of a mechanism-based assay to select inhibitors of a viral nuclease

A Colorimetric Assay for High-Throughput Screening of Inhibitors of Herpes Simplex Virus Type 1 Alkaline Nuclease

Joel C. Bronstein and Peter C. Weber¹ Infectious Diseases Section, Pitzer Giolai Research and Development, Ann Arbor, Michigan 48105

Nuclease assays. The DNA-methyl green degradation assay utilized a DNA substrate complexed with the intercalating dye methyl green and was obtained commercially (Sigma Chemical Co.). Degradation of the DNA substrate resulted in release of the dye and a corresponding loss of solution color. Assays were carried out as 150-µl reactions in 96-well plates and included 75 μ l water, 15 μ l 10× assay buffer (0.5 M Tris–HCl, pH 7.5, 30 mM MgSO₄), 5 µl compound stock prepared in methanol, 30 μ l AN (2 μ g) or bovine pancreatic DNaseI (0.15 units) diluted in DE buffer just prior to use, and 25 μ l DNA-methyl green substrate (25 μg from a 1 mg/ml stock). Typically all of the components of the reaction were added with the exception of the substrate, and the plate was mixed and incubated at 37°C for 5 min. The DNA-methyl green substrate was then added to start the reaction, and the plate was then mixed again and incubated at 37°C for 3 h. The reaction was terminated by the addition of 50 μ L sodium citrate (0.2 M, pH 7.5), and the plate was then mixed, sealed, and stored in the dark at room temperature for at least 12 h to allow color equilibration before reading on a spectrophotometer to determine $A_{\rm sm}$. AN inhibitor screens typically included the

Search and development of antiviral drugs

Blind screening III III Is no longer attractive

Modern antiviral discovery

- Mechanism-based screens
- Cell-based assays
- Combinatorial chemistry
- High-throughput screens
- Computational Approaches:
 - Structure-assisted drug design
 - Genome sequencing, proteomic analyses
 - In silico discovery via Virtual Screening

A cell-based assay to select inhibitors of HIV protease

Grafsrom et al., Adv. Exp. Med. Biol. 312:25-40, 1992

Active tetracycline efflux protein

A cell-based assay to select inhibitors of the activity of viral transcription factors

A small molecule that directly blocks DNA binding of the protein or blocks a proteinprotein interaction required for the cooperative binding can be identified

ORIGINAL ARTICLE

New cell-based indicator assays for the detection of human cytomegalovirus infection and screening of inhibitors of viral immediate-early 2 protein activity

A. Luganini¹, P. Caposio¹, M. Mondini², S. Landolfo¹ and G. Gribaudo¹

1 Department of Public Health and Microbiology, University of Torino, Torino, Italy

2 Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Novara, Italy

CellPress

Drug Repurposing Approach Identifies Inhibitors of the Prototypic Viral Transcription Factor IE2 that Block Human Cytomegalovirus Replication

Beatrice Mercorelli,^{1,4} Anna Luganini,^{2,4} Giulio Nannetti,¹ Oriana Tabarrini,³ Giorgio Palù,¹ Giorgio Gribaudo,^{2,5} and Arianna Loregian^{1,5,*} ¹Department of Molecular Medicine, University of Padua, 35121 Padua, Italy ²Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy ³Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy ⁴Co-first author ⁵Co-senior author

The FASEB Journal express article 10.1096/fj.05-3904fje. Published online October 27, 2005.

A cell-based high-throughput assay for screening inhibitors of human papillomavirus-16 long control region activity

Effect of cytokines on HPV-16 LCR activity

Cytokines	% of LCR inhibition	Group ^a
	(mean values ± sp)	
Anti-inflammatory		
IL-4 IL-10	56.6±7.2	ш
IL-10 IL-13	0	I Ш
	64.3±5.8	
TGF-β1	61.4 ± 8.4	ш
TGF-β2	60.1 ± 6.5	III
TGF-β3	58.9 ± 5.9	ш
Activin	32.4 ± 4.3	Ш
GDF-15	16.3 ± 2.1	I
Osteonectin	0.2 ± 0.03	I
Pro-inflammatory		
IL-1β	33.3 ± 4.6	п
IL-15	12.6 ± 1.8	I
IL-17	29.6 ± 3.6	I
IL-18	3 ± 0.5	I
IL-19	9 ± 1.2	I
IL-20	10.2 ± 0.8	I
IL-22	10.3 ± 1.7	I
TNF-α	53.7 ± 4.3	III
GM-CSF	12 ± 0.7	I
Growth factors		
IL-3	2.1 ± 0.09	I
IL-6	5.2 ± 0.3	I
IL-7	2.5 ± 0.5	Ι
IL-21	2.4 ± 0.4	Ι
Chemotactic factors		
IL-8	0	I
IP-10	5.2 ± 0.9	Ι
LEC	16.1 ± 2.3	Ι
MIP-1a	0	I
MIP-1β	27.3 ± 3.8	I
NAP-2	0	I
I-309	0.9 ± 0.2	I
Interferons		
IFN-α	58.2 ± 7.6	III
IFN-β	63.1 ± 4.8	III
IFN-γ	35.5 ± 4.3	п

^aGroups are formed according to the % of LCR inhibition: I, 0-29%; II, 30-49%; III, 50-70%.

Search and development of antiviral drugs

Blind screening III III Is no longer attractive

Modern antiviral discovery

- Mechanism-based screens
- Cell-based assays
- Combinatorial chemistry
- High-throughput screens
- Computational Approaches:
 - Structure-assisted drug design
 - Genome sequencing, proteomic analyses
 - In silico discovery via Virtual Screening

Combinatorial chemistry

Eg. If assembled pairwise with 10 linkers, a collection of 10,000 small molecules yields a library of 10⁹ new combinations.

Automated high-throughput screens

Search and development of antiviral drugs

Blind screening Image Is no longer attractive

Modern antiviral discovery

- Mechanism-based screens
- Cell-based assays
- Combinatorial chemistry
- High-throughput screens
- Computational Approaches:
 - Structure-assisted drug design
 - Genome sequencing, proteomic analyses
 - In silico discovery via Virtual Screening

Stucture-assisted drug design as an example of computational approach to drug discovery

Structure of HIV protease with the inhibitors saquinavir (A) e indinavir (B)

Druggable Human Viruses

Herpes simplex virus (HSV) Varicella-zoster virus (VZV) Human Citomegalovirus (CMV) Human Immunodeficiency virus (HIV) Influenza virus Respiratory Syncitial virus (RSV) Hepatitis viruses A, B, C (HAV, HBV, HBC) Human Papillomavirus (HPV) Picornavirus

Knowledge of viral cycles identifies general targets for antiviral drug discovery

Function		Lead compound or example	Virus
Attachment		Peptide analogs of attachment protein	HIV
Penetration and uncoating		Dextran sulfate, heparin	HIV, herpes simplex virus
mRNA synthesis		Interferon	Hepatitis A, B, and C viruses; papillomavirus
	5'	Antisense oligonucleotides	Papillomavirus, human cytomegalovirus
Protein synthesis/ Initiation		Interferon	Hepatitis A, B, and C viruses; papillomavirus
DNA/RNA replication		Nucleoside, nonnucleoside analogs	Herpesviruses, HIV, hepatitis B and C virus
Assembly		Peptidomimetics	HIV, herpes simplex virus

Some viral targets for antiviral drug discovery

The prototypic compounds (pharmacophores) of important classes of antiviral agents

Examples of viral targets for antiviral drugs

- Attachment
- ✓ Entry and unco
- ✓Viral gene expressio.
- Replication of viral genon
- ✓Assembly
- ✓ Maturation and release

Attachment	
Agent	Virus
Receptor antagonists - soluble receptors - peptidomimetics - shRNAs	HIV
Neutralizing antibodies	Many
Destran sulphate, heparin, peptides	Herpesvirus, HPV

BMC Biotechnology

Research article

Generation of potent neutralizing human monoclonal antibodies against cytomegalovirus infection from immune **B** cells

Ada Funaro^{*1,2}, Giorgio Gribaudo³, Anna Luganini³, Erika Ortolan^{1,2}, Nicola Lo Buono¹, Elisa Vicenzi⁴, Luca Cassetta⁴, Santo Landolfo³, Richard Buick⁵, Luca Falciola⁶, Marianne Murphy⁶, Gianni Garotta⁶ and Fabio Malavasi^{1,2}

Inhibition of Herpes Simplex Virus Type 1 and Type 2 Infections by Peptide-Derivatized Dendrimers^v†

Anna Luganini,¹ Silvia Fabiole Nicoletto,² Lorena Pizzuto,² Giovanna Pirri,² Andrea Giuliani,² Santo Landolfo,¹ and Giorgio Gribaudo¹*

Department of Public Health and Microbiology, University of Turin, Turin,¹ and Spider Biotech S.r.l., Colleretto Giacosa, Turin,² Italy

Examples of viral targets for antiviral drugs

✓Attachment

 Entry and uncoating 	Entry and uncoating	
✓Viral gene expression	A	
✓Replication of viral genome	Agent	Virus
✓Assembly	Amantadine, rimantadine	Influenza A virus
 Maturation and release 	Pleconaril	Picornavirus
	Enfuvirtide	HIV
✓Assembly	Amantadine, rimantadine Pleconaril	Influenza A virus Picornavirus

✓They are ion channel blockers that inhibit viral RNA uncoating by blocking the function of the envelope M2 protein

✓ Useful in therapy and prevention of influenza A infections

✓ They must be given within 24-48 hrs from symptoms onset

✓ High frequency of resistant virus due to M2 or HA mutations

Model for uncoating Influenza A virus and effect of amantadine and rimantadine

Amantadine and Rimantadine: mechanism of action

Role of M2 protein in Influenza A virus uncoating

Pleconaril : mechanism of action

Examples of viral targets for antiviral drugs

- ✓Attachment
- ✓ Entry and uncoating
- ✓ Viral gene expression
- Replication of viral genon
- ✓Assembly

Maturation and release

Viral gene expressionAgentVirusInterferonsHAV, HBV, HCV, HPVAntisense oligosHCMV

An example of an antiviral antisense oligodeoxynucleotide: Fomivirsen

 It is an antisense phosphorothioate oligodeoxynucleotide complementary to a segment of HCMV IE2 mRNA

 It inhibits viral E and L gene expression, viral DNA synthesis, and viral replication by blocking translation of IE2 mRNA

Fomivirsen (Vitravene) was used for intravitreal treatment of HCMV retinitis in AIDS patients resistant to other anti-HCMV drugs. No longer marketed.

✓ Fomivirsen was the first antisense oligo approved for use in humans (FDA, 1998)

Examples of viral targets for antiviral drugs

- ✓Attachment
- Entry and uncoating
- ✓Viral gene expression
- ✓ Replication of viral genome
- ✓Assembly
- Maturation and release

Replication of viral genomeAgentVirus

Nucleoside analogs Herpes, HIV, HBV, HCV

Nonnucleoside inhibitors

Ribavirin

Herpes, HIV

RSV, HCV, HEV

Antiviral nucleoside and nucleotide analogs

- ✓ The most widely used antiviral drugs
- ✓ They target viral DNA polymerases and viral reverse transcriptases
- ✓ They bear a base and/or a sugar modification
- Their activation to dNTPs requires phoshorylation mediated by cellular and/or viral kinases
- Viral polymerases are selectively inhibited because they bind the modified dNTP with higher affinity (100-fold) than cellular enzymes.

Nucleoside and nucleotide analogs:mechanism of action

Lack of the di un 3'-OH group of the sugar

Growing DNA chain terminates and further DNA replication is blocked

Base modification

Alteration of base pairing

Native nucleosides

Structures of antiviral nucleoside analogs

Many well-known antiviral compounds are nucleoside and nucleotide analogs

Chain termination by acyclic nucleoside analogs ACV and AZT, and by acyclic nucleotide analogs Cidofovir and Adefovir

Acyclovir (Zovirax)

 Acyclovir is a nucleoside analog similar to guanosine, but contain an acyclic sugar group (hydroxyetossimethyl) in place of the deoxyribose. It is a prodrug – a precursor of the active antiviral compound

✓Acyclovir is active against HSV and VZV (to some extent)

✓ Useful for acute primary diseases and to prevent reactivations

✓ It does not eliminate latent infections

 Resistance stems from mutations of the viral thymidine kinase (TK) and/or DNA polimerase

Acyclovir: mechanism of action

Chain termination

ACV derivatives: Famciclovir and Valaciclovir

Famciclovir:

9-(4-acetoxy-3-acetoxymethylbut-1-yl)guanine (Famvir)

✓They are proprodrugs that require two activation events in a row:

- cleavage of the side chain
- phoshorylation

 Fivefold-higher oral bioavailability than ACV

Valacyclovir: L-valyl ester of acyclovir (Valtrex)

✓Active against HSV and VZV

Ganciclovir (Cytovene)

 GCV is a guanosine analog with an acyclic sugar group (dihydroxyipropoximethyl) in place of deoxyribose

✓ It is selectively active agaisnt HCMV

- ✓ Useful for over HCMV diseases, prophylaxis and preemptive therapy
- Intially given intravenously, quite toxic, used only for life-threatening HCMV infections
- Valgancicovir, a valyl ester prodrug of GCV can be taken orally and is less toxic

 Resistance stems from mutations of the viral kinase (pUL97) and/or DNA polimerase

Foscarnet (Foscavir)

 Foscarnet it is the only nonnucleoside DNA replication inhibitor of herpesviruses. It is a pyrophosphate analog (phoshonoformic acid)

- Foscarnet it is a noncompetitive inhibitor of the pyrophoshate-binding site of herpesvirus DNA polymerases
- ✓ It is active against HCMV (HSV, HBV, HIV)
- ✓ Useful for therapy of HCMV GCV-resistant strain infections
- ✓ It accumulates in bone and causes kidney toxicity, recommended only for life-threatening infections for which other anti-HCMV drugs are no longer effective
- ✓ Resistance stems from mutations of the viral DNA polimerase

Examples of viral targets for antiviral drugs

- ✓Attachment
- Entry and uncoating
- ✓Viral gene expression
- ✓ Replication of viral genome
- ✓Assembly
- Maturation and release

Maturation and releaseAgentVirusPeptidomimetics,HIVsubstrate analogs

Neuraminidase inhibitors

Influenza

Neuroaminidase inhibitors: an example of <u>structure-based</u> design in antiviral drug discovery

Neuraminidase: structure and function

In light blue and yellow, NA active site invariant amino acids In red, neuraminic acid ✓NA is a tetrameric envelope glycoprotein

✓NA cuts the the a-chetosidic bond between terminal neuraminic (sialic) acid and the oligosaccharide chain

✓NA destroys HA cell surface receptors

✓NA promotes virus penetration through sialic acid-rich secretions

✓NA mediates release of viral progenies by cutting sialic acid residues of the surface of infected cells, thus breaking down non-productive re-attachment to cell receptors during exit.

Function of Influenza virus neuraminidase

P. Palese, M. Ueda, K. Tobita, R.W. Compans. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410 (1974).

33° CWT phenotypeRelease of infectious free virions

39.5°C NA- phenotype Non-infectious virions aggregates

Development of neuroaminidase inhibitors

Crystallization

Structural analysis

Structure of influenza A virus neuroaminidase

Α

The binding site of the enzyme does not vary from strain to strain

- It consists of 18 amino acid residues of which 12 are in direct contact with the bound sialic acid analogue (and presumably with sialic acid in catalytically active situations).
- Four of these 12 are positively-charged arginines, while another 4 are **negative-charged glutamic** and **aspartic acid** residues. The remainder are neutral (tyrosine, asparagine, isoleucine and tryptophan).

Structure of the influenza A neuraminidase N9 bound to an analogue of sialic acid has been determined by X-ray crystallography

Sialic acid (*N*-acetyl neuraminic acid)

Zanamivir

Strucure-based design of inhibitors of IV A and B neuraminidase

Model of part of the active site of influenza neuraminidase bound to zanamivir

Crystallographic structure of the influenza A neuraminidase with an inhibitor (Zanamivir) bound to the active site

Rational drug design

Development of neuroaminidase inhibitors

Tamiflu

(Gilead/Hoffmann La Roche) FDA approved Oral

Development of neuroaminidase inhibitors: *in vitro* activity

Untreated cells: the virus is normally assembled and released from infected cells

Cells treated with a NA inhibitor: the virus forms large non-infectious aggregates on the surface of infected cells

Zanamivir (*Relenza*) and Oseltamivir (*Tamiflu*)

- Neuraminic (sialic) acid analogs
- They specifically inhibit NA of influenza and B viruses
- Useful in therapy and prophylaxis of influenza infections. If given within 48, they will reduce disease's symptoms and duration.

Zanamivir: inhalation by Diskhaler

Oseltamivir: oral

Resistance stems from NA mutations