MASTER IN CELLULAR AND MOLECULAR BIOLOGY
Developmental Neurobiology - Cortical Development
May 2020 - Week 1

Tuesday 5th of May:

Lecture 1: Cellular and molecular organization of the cerebral cortical
progenitors in mammals

11:00-13:00 - Personal Introduction+ Lecture + Questions

Thursday 7th of May:

14:00-16:00 - Novel technologies used in neurobiology - (i) 3D whole brain
imaging, (i) rabies virus tracing and optogenetics; (iii) sScRNAseq & cell
lineage tracking, (iv) IPSCS & brain organoids; (v) in vivo & in vitro
reprogramming.

Tasks for students:

1) Read the article that will be presented on Week 2 (prepare questions)
2) Work on the articles related to the novel technologies (presentation due in Week 3)



Developmental Neurobiology - Cortical Development
Week 2

Monday 11" of May:

Lecture 2: Acquiring neural diversity in the developing cerebral cortex

14:00-16.00 - Lecture and questions

Tuesday 12" of May.

Lecture 3: Presentation of a scientific paper:
initial hypothesis and final product

11:00-13:00 - Lecture and questions
14:00-16:00 - Introduction to the task of writing a fellowship proposal

Tasks for students:
1) Work on the articles related to the novel technologies (presentation due in Week 3)
2) Choose the article for the fellowship proposal presentation (presentation due in Week 4)




Developmental Neurobiology - Cortical Development
Week 3

Monday May 18"

Lecture 3: Brain disease modelling for understanding neurodevelopmental
disorders in humans.

14:00-16:00 - Lecture and questions

Tuesday May 19"

11:00-13:00 - Student presentation on novel technologies
(5 groups - 2-3 per group > 15-20’ per group + questions)

Task for students:
Work on the fellowship proposal



Developmental Neurobiology - Cortical Development
Week 4
Monday May 25"

14:00-17:00- Discussion with each group separately to give feedback on the
fellowship proposal (15-20° per group)

Thursday May 28"

10:00-13:00 - Student presentation of the fellowship proposal by the
different groups (15-20° per group)



Scientific cursus

Michele Catherine STUDER married MENEGHELLO
1 child born in 2003

POSITION: Research Director Inserm since 2009
at the Institute of Biology Valrose, iBV

University de Nice Sophia-Antipolis (UNS)

Nice, France

Group Leader (PI) of the " Development and Function of Brain Circuits Lab”;

EDUCATION: 1987: “Laurea 110/110 cum laude" in Biological Sciences
at the University of Pisa, Pisa, Italy.

Work on " Population cytogenetics of Albanians in the province of Cosenza:
freguency of Q and C band variants."

1990: PAD in Molecular Biology
at the "Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy”.

Work on "Transcriptional regulation of the mouse liver/bone/kidney-type alkaline
phosphatase gene in vitro."

1989: Visiting Research Fellow at Fidia S.P.A. 'Research Laboratories’, Abano, Italy

1990: Visiting Research Fellow at Research Institute of Molecular Pathology (IMP), Vienna,
Austria



Scientific cursus

1991-1997: POST-DOC Research Fellow at:

Division of Developmental Neurobiology,

MRC/National Institute for Medical Research, London, UK.
Head of Laboratory: Robb Krumlauf

Work on: " In vivo genetic interactions and functional characterization
of the mouse homeotic gene Hoxbl in the developing hindbrain”

1994: Visiting Research Fellow at Baylor College of Medicine,
Houston, USA; Head of Laboratory: Alan Bradley

1997-2001: MRC Research Group Leader/ Junior Lecturer

MRC Centre for Developmental Neurobiology, King's College, Guy's
Campus, London, UK.

Centre Director: Andrew Lumsden

Work on: "Role of retinoic acid signaling during forebrain patterning”.

2000: Visiting Research Fellow at UCSF, San Francisco, USA
Head of Laboratory: John Rubenstein



Scientific cursus

2001-2009: Full Investigator and Responsible of the Transgenic and
Knock-out Core Facility at TIGEM (Telethon Institute of Genetics and

Medicine), Napoli, Italy.
Institute Director: Andrea Ballabio

Work on: " Functional and genetic characterization of area patterning
genes during cortical development .

Since 2009: Directeur de Recherche (DR2-DR1) Inserm, University of
Nice Sophia-Antipolis, Valrose Campus, Nice, France.

Work on: "Molecular and cellular mechanisms during assembly of brain
circuits” http://ibv.unice.fr/research-team/studer/



Cellular and molecular organization of the cerebral
cortical progenitors in mammals

May 5th 2020
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Regional signalling centres in the developing forebrain
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Antero-Posterior (AP) and Dorso-Ventral (DV)
regionalization, of the forebrain,
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The mammalian brain based on the prosomeric mode/
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Localized signalling in the forebrain
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Seth Blackshaw et al. J. Neurosci. 2010;30:14925-14930



Cortical Projection neurons and Interneurons are born from
different D/V regions of the telencephalon
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Sulci and gyri of the neocortex




BRAIN SIZE AND NEURON COUNIT

Cerebral cortex mass and neuron count for various mammals.

Capvbarg  Rhesus  Western African Bush
i Macaque  Gorilla Elephant
non-primate primate primate primate non-primate
482 g 698 g 377 g 1232 g 2848 g
billion billion billion billion billion

neurons neurons l neurons neurons neurons



Cerebral Cortex Neurons (billions)
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divided into six distinct layers
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Morphological heterogeneity of cortical neurons




How can a relatively simple pseudostratified neuroepithelium
transform into a complex structure organized into layers?
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aRGC Apical (VZ) radial glial cell
bRGC Basal (SVZ) radial glial cell
CP Cortical plate
IPC Intermediate progenitor cell
MZ Marginal zone
NPC Neuroepithelial progenitor cell
SP Subplate
SVZ Subventricular zone
Ventricular zone

Order of birthdate & lamination

Intracerebral
projections

Subcerebral
projections

NPC expansion SP: s L6: s L5: s L4 : s L3 : s L2 Gliogenesis
Early neurogenesis Late neurogenesis

modified from Kwan et al.,, 2012
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First stage: proliferation via symmetric division

Interkinetic nuclear migration

| | | | | ! N AN it/ | ’
| Y ( { | d \l R d \ LA \ ,', 1\
-—\ LIS A N —-_\ i L \
) ! b )
Ve ] 0 (ventricle] ventricle / v l
s is near During S stage, nucleus and i 2 cel 'S InM ph se (mitosis), cells
e surrounding cytoplasm and nucle i5ra lose their connections to
migrate toward the pial oW ar il pial surf e, divide, and
surface and DNA replicates extend n W processes
toward th e pial surface




Second stage: proliferation via asymmtric division
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Self-renewing and intermediate progenitors in the developing mammalian neocortex
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Symmetric and asymmetric progenitor divisions
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Differences in cell division modes during lateral versus radial expansion
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Differences in cell number for lateral vs radial expansion

Virginia Ferndndez et al. EMBO J. 2016



Thickness

Surface area

Grey matter

White matter

Ventricle

10 mm

Florio & Huttner, Development, 2014



Different types of progenitors in VZ and SVZ
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Namba & Huttner, 2016



Mouse vs human progenitor expansion
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Molecular characterization of the different cell types
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The human cortex generates more basal radial glia (OSV.Z)
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(Hansen et al.,Nature, 2010)



Morphological and cellular features of cortical progenitors
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Morphological transition of radial glia subtypes
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Delamination of neural progenitors via adherens junction proteins
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Human outer Radial Glia (0RG) cells retain a distinct molecular identity
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An oRG population in the mouse
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The ferret: an ideal animal for studying mechanisms
leading to cerebral cortical gyrencephaly

Adult

De Juan Romero et al., 2015



Looking for genes involved in cortical folding in the ferret
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Differential gene expression between splenial gyrus (56)
and lateral sulcus (LS) along germinal layers
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Expression of Trnpl in Ferret and Mouse
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Stahl et al., 2013



Overexpression of Trnpl in vivo Increases the Number of Apical Progenitors
and Promotes Lateral Expansion
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Knockdown of Trnpl In Vivo Increases the Number of Basal Progenitors
and Promotes Radial Expansion
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Trnpl function in the mammalian cerebral cortex
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High levels of Hippo-YAP signalling pathway expands oRG

The Hippo-YAP pathway
coordinates growth-factor-
mediated signalling
pathways.
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Gene expression changes affecting neural progenitor cells
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Evolution of the Rho-G TPase gene ARHGAPIIB
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Human-Specific NOTCHZNL Expand Cortical Neurogenesis through Delta/Notch Regulation
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Mechanisms and genes associated with bRG generation/amplification
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Penisson et al., 2019



Cytoarchitecture and cell types in the developing mammalian neocortex

Pinson et al., 2019








